
Final Report

Title: Broadcast based control of multi-
agent systems for consensus

AFOSR/AOARD Reference Number: AOARD-08-4098

AFOSR/AOARD Program Manager: John Seo, Lt Col, USAF
.

Period of Performance: 2008 - 2010

Submission Date: December 2010

PI: Debasish Ghose, Indian Institute of Science, Bangalore, India

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
08 DEC 2010

2. REPORT TYPE
FInal

3. DATES COVERED
 01-06-2008 to 01-05-2010

4. TITLE AND SUBTITLE
Broadcast based control of multi-agent systems for consensus

5a. CONTRACT NUMBER
FA23860814098

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Debasish Ghose

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Indian Institute of Science,Dept. of Aerospace Engineering,Bangalore
560-012,India,IN,560-012

8. PERFORMING ORGANIZATION
REPORT NUMBER
N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AOARD, UNIT 45002, APO, AP, 96337-5002

10. SPONSOR/MONITOR’S ACRONYM(S)
AOARD

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
AOARD-084098

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This research investigated the consensus problem where there is a centralized decision-maker which
conveys action plans to the swarm members with the constraint that the action plan is broadcast to the
members of the swarm, as against individual control actions by each agent to 1) Formulate the problem as
one in which the central decision-maker has information about the states of the swarm members, 2)
Determine a strategy for the decision-maker so that it can broadcast an action plan to all the swarm
members at some frequency to bring about a consensus among the swarm members by having them
implement the broadcast instruction, 3) Explore new solution for eliminating the known
drawbacks(non-achievement of consensus and large computation time) using a linear programming based
algorithm approach, 4) Refine this strategy to achieve quick convergence for large swarms, and 5) develop
analytical convergence proofs and study the effect of varying number of swarm members and different
randomness mechanisms on convergence.

15. SUBJECT TERMS
Guidance, Control System, Decision Making, systems engineering, cybernetics

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

49

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Objectives

There has been considerable interest in recent times in achieving consensus in swarms of agents using
simple strategies. Work in this area has ranged from completely autonomous agents to partially
autonomous agents, with several different frameworks for communication and information. In this
proposal we intended to address the consensus problem where there is a centralized decision-maker
which conveys action plans to the swarm members with the constraint that the action plan is broadcast to
the members of the swarm, as against individual control actions by each agent. This implies that each
member of the swarm receives exactly the same action advice and implements the same. However, the
system is not autonomous in the sense that the information about the agents’ states is available to the
centralized decision-maker through its own sensing devices. We formulate the problem as one in which
the central decision-maker has information about the states of the swarm members. This information is
assumed to be obtained by the decision-maker using its own sensor suite. On the other hand, the swarm
members have no global information. Their information is local and is restricted to a reduced state in
their own local co-ordinate system. They are capable of receiving instructions through broadcast and
implementing them in their local reference frame. The problem we address is to determine a strategy for
the decision-maker so that it can broadcast an action plan to all the swarm members at some frequency.
The objective is to bring about a consensus among the swarm members by having them implement the
broadcast instruction. A further objective was to design a strategy that would require minimal
computational time.

.

Status of effort

In our work we were able to design a strategy based on a randomization algorithm and a simplified linear
programming formulation to achieve positional consensus among a fairly large number of agents using a
reasonably small computational effort. Several strategies were examined and algorithms developed and
evaluated and the results have been reported. In addition we have also designed a consensus algorithm in
which each agent takes its decision autonomously. We have shown that the computational time
advantage is obtained even for this case if we resort to a linear programming formulation instead of a the
standard non-linear formulation that researchers have used earlier.

Abstract

This work addresses the problem of achieving rendezvous in a multi-agent system under various
information paradigms. We consider two classes of algorithms (i) Broadcast based algorithms and (ii)
Distributed control algorithms. In the first we consider both the centralized and decentralized cases. In
the centralized case each agent is homogeneous and all agents are controlled by the same broadcast
command from a centralized controller. This method has low communication cost. In the decentralized
case each agent computes its control using the information it obtains from its neighboring agents and
shares its control with its neighbours through a broadcast command. In the second case we consider each
agent to implement its own control based on information gathered from its neighbours through a limited
sensing capability. We show that in the distributed control algorithm, a modification in the decision
domain of the agents yields significant benefits in terms of computational time, when compared with
standard algorithms available in the literature. Moreover, we also show its straightforward application to
higher dimensional problems which is a considerable improvement over available algorithms in the
literature.

Some recent work in the literature, using ideal deterministic models for mobile robots, with its model
based on an actual MEMS micro-robot, has shown that it is possible to achieve point convergence in this
framework for two robots and to achieve limited consensus. But perfect positional consensus cannot be
obtained for larger number of robots. In the literature, an optimization problem was formulated that
minimizes the maximum distance between swarm members. However, the formulation and the solution
suffer from two important drawbacks. One is that the swarm members cannot achieve point convergence
(or perfect consensus) even after repeated application of the strategy. They can only be brought within a

certain distance of each other and no closer. The second drawback is that the optimization is rather time
intensive and needs non-standard optimization techniques and software such as SOCP (second order cone
programming) to obtain a solution. In our work we propose a solution for both the above drawbacks. In
the case of the first drawback (that is, non-achievement of consensus) we propose a strategy that has a
randomness function built into the broadcast command that will eventually help the swarm to achieve
point convergence without relaxing the broadcast command paradigm of the original problem. In the
second case (that is, large computation time), we will propose a LP (linear programming) based
algorithm that is less computationally intensive than the SOCP based algorithm.

Personnel Supported

 Kaushik Das (PhD Research student)

 P.B. Sujit (Post-doctoral visitor)

 Joesph Thomas (Master’s Student)

 Gaurav Rattan (Project assistant)

 Eshwaran Vijay Kumar (Project assistant)

Publications (See Attachments for the actual papers)

K. Das and D. Ghose: Randomization mechanisms based positional consensus in homogeneous multi-agent

systems, Proceedings of the IISc Centenary International Conference and Exhibition on Aerospace
Engineering (ICEAE2009), Bangalore, India, May 2009, pp. 1327-1336.

K. Das and D. Ghose: Positional consensus in multi-agent systems using a broadcast control mechanism,

Proceedings of the American Control Conference (ACC'2009), St. Louis, USA, June 2009, pp. 5731-
5736.

K. Das and D. Ghose: Multi-agent rendezvous algorithms under various information paradigms,

Proceedings of the International Conference on Intelligent Unmanned Systems (ICIUS’'2010), Bali,
Indonesia, November 2010.

K. Das and D. Ghose: Multi-agent rendezvous algorithm with rectilinear decision domain [Book Chapter],

Trends in Intelligent Robotics (Eds. P. Vadakkepat and J.-H. Kim), Communications in Computer
and Information Science, Vol. 103, Springer Verlag, Berlin, Germany, pp. 162-169, 2010.

 K. Das and D. Ghose: Positional consensus of multi-agent systems using linear programming based

decentralized control with rectilinear decision domain [Book Chapter], Trends in Intelligent Robotics
(Eds. P. Vadakkepat and J.-H. Kim), Communications in Computer and Information Science, Vol.
103, Springer Verlag, Berlin, Germany, pp. 178-185, 2010.

Interactions

(a) Participation/presentations at meetings, conferences, seminars, etc.

 INDO-US MAV Workshop, Bangalore, November 2008.

 American Control Conference, St. Louis, USA, June 2009.

 IISc Centenary International Conference and Exhibition on Aerospace Engineering
(ICEAE2009), Bangalore, India, May 2009.

 INDO-US Workshop on System of Systems Engineering, IIT Kanpur, India, October 2009.

 International Conference on Intelligent Unmanned Systems (ICIUS’'2010), Bali, Indonesia,

November 2010.

 FIRA RoboWorld Congress, Bangalore, India, September 2010.

(b) Describe cases where knowledge resulting from your effort is used, or will be used, in a

technology application. Not all research projects will have such cases, but please list any
that have occurred.

 None

Inventions:

(a) List discoveries, inventions, or patent disclosures. (If none, report None.). None

(b) Complete the attached “DD Form 882, Report of Inventions and Subcontractors.”
Completed

 Honors/Awards

 None

Archival Documentation

 Softcopies of papers listed above under publications are attached.

Software and/or Hardware (if they are specified in the contract as part of final deliverables)

 Not Applicable

Positional Consensus in Multi-Agent Systems using a Broadcast Control

Mechanism

Kaushik Das and Debasish Ghose

Abstract— In this paper a strategy for controlling a group
of agents to achieve positional consensus is presented. The
proposed technique is based on the constraint that every agents
must be given the same control input through a broadcast
communication mechanism. Although the control command is
computed using state information in a global framework, the
control input is implemented by the agents in a local coordinate
frame. We propose a novel linear programming formulation
that is computationally less intensive than earlier proposed
methods. Moreover, we introduce a random perturbation input
in the control command that helps us to achieve perfect
consensus even for a large number of agents, which was not
possible with the existing strategy in the literature. Moreover,
we extend the method to achieve positional consensus at a
pre-specified location. The effectiveness of the approach is
illustrated through simulation results.

I. INTRODUCTION

The principle of using multiple agents is motivated by

the idea that instead of using a highly sophisticated and

expensive robots, it may be advantageous in certain situations

to use a group of small, simple, and relatively cheap robot.

The group of agents can be used to accomplish various

tasks in different environment such as tactical operations,

exploratory space missions, remote monitoring with mobile

sensor networks, avoidance of collision and over-crowding

in automated air traffic control, cleanups of toxic spills, fire

fighting and cooperative search with unmanned air vehicles.

One of the problems that is of paramount importance in

multi-agent systems is that of achieving consensus, that is,

achieving identical values for some specified subset of the

states of the agents. For instance, the agents may try to

converge to the same direction of movement [1] after some

time or they might want to converge to a point. Both are

problems in achieving consensus. If we have a centralized

system with perfect information then achieving consensus

is a trivial matter, since the central controller can instruct

each agent suitably to reach a common consensus point.

However, if the communication system has a constraint on

the number of messages that it can communicate, then one

may opt for a broadcast protocol where the central controller

will communicate simple and identical instructions to all the

agents through a broadcast mechanism. We further impose

the additional constraint that each agent can interpret the

control command only in its local coordinate frame or local

state space. Only the central controller has access to the

K. Das is a Research Scholar and D. Ghose is a Professor in the Guidance,
Control, and Decision Systems Laboratory in the Department of Aerospace
Engineering, at the Indian Institute of Science, Bangalore 560012, India
kaushikdas+dghose@aero.iisc.ernet.in
This project is supported by an AOARD/AFOSR grant.

global states of the system. Some of these constraint are

common to other problems of a similar nature (for instance,

see [2], [3], [4], [5]).

This problem was motivated by a recent paper by Bretl

[6] where a control strategy for a group of micro-robots is

developed to perform a useful task even when every robot

receives the same control signal. The paper considers point

robots with simple kinematics. It was shown that when

there are only two agents, there exists a broadcast control

command (that is, both agents receive identical instructions

from the central controller) using which both agents can meet

at the same location at the same time, for almost all initial

conditions. However, if the number of agents is more than

two, then the best that the agents can achieve is to come

close to each other within a certain distance (measured by

the radius of the smallest disc that contains all the agents

positions), which is a function of the initial conditions. Bretl

[6] formulates this problem as an optimization problem that

minimizes the radius of the disc, and proposes a solution

using the second order cone programming (SOCP) technique

[8]. However, using this strategy the agents cannot be made

to converge to a point. Once the solution of the SOCP is

implemented, no further improvement is possible. Bretl’s

paper was in turn motivated by an interesting paper by

Donald et al. [7] on the development of untethered, steerable

micro-robots, where every robot receives the same power and

control signal through an underlying electrical grid.

Our paper makes several specific contributions. The first

is to propose a strategy that uses the basic Bretl’s model

with an additional randomization feature that allows large

number of agents to achieve positional consensus or point

convergence on repeated application of the algorithm with-

out compromising the broadcast constraint on the control

command. The second contribution is that our method can

be extended to the case where the agents can be made to

converge to any pre-specified point. The third contribution is

to propose an optimization problem for this task that is based

on a linear programming formulation. This allows standard

and easily available software to be used for obtaining the

solution. Moreover, this formulation also retains the property

that the number of decision variables, whose values are to be

communicated to agents, remains unchanged even when the

number of agents increases. Finally, we also propose some

interesting properties related to the positional formation of

agents when the LP based strategy is applied iteratively.

It is worth noting that the randomization feature in the

algorithm has some similarity with the random perturbation

used in Viscek’s model [1]. Vicsek et al. [1] propose a simple

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

FrC19.1

978-1-4244-4524-0/09/$25.00 ©2009 AACC 5731

but compelling discrete time model of n autonomous agents

(points or particles) all moving in the plane with constant

speeds but with different headings. Each agent updates its

heading using a local rule based on the average of the

headings of its neighbors plus some random perturbation.

The paper is organized as follows: In Section II we

consider two agents and show that it is possible to move

two agents to a common location using identical control.

In Section III we formulate a linear programming problem

for minimizing the proximity between agents by using iden-

tical broadcast control. In Section IV we have discussed

some results on the formation of the agents after the linear

programming solution is implemented. In section V we

introduce the notion of iterative solution of the problem by

repeated use of the LP algorithm and show that introducing

a random perturbation in the broadcast mechanism leads to

point convergence of the agents by repeated application of

the LP technique. In Section VI we present a modification

of the algorithm to ensure that the swarm of agents converge

to a pre-specified point. In section VII we show several

simulation results that illustrate the salient features of the

proposed algorithm. Section VIII concludes the paper with

a discussion of possible future directions of research.

II. FORMULATION AND SOLUTION FOR TWO AGENTS

We will first pose the problem in a general framework

and then address the two agents case to clarify many of the

assumptions and concepts discussed in the previous section.

Assume that n agents are located on an obstacle-free

plane. We assume that the central controller has access to

the global state of the system which, in this case, consists

of the position (xi ∈ R
2) and orientation (θi ∈ (−π, π]) of

the agents, i = 1, . . . , n. The central controller computes

a common local control for the agents and broadcasts it to

the agents for implementation. The local control is in the

form of a tuple (θ, d), which is interpreted by each agent in

its local frame of reference. Here, θ refers to the angle by

which each agent changes its orientation, and d is a scalar

that refers to the distance by which each agent moves after

effecting the orientation change. Note that, the broadcast

mechanism (θ, d) is the same for all the agents. Also, the

local frame of reference for each agent is centered at the

agent’s location and its reference axis is oriented along its

current orientation. As an illustration see Fig. 1, where agents

are shown located initially at xi0 with initial orientation θi0 in

the global reference frame. If the control command broadcast

to all the agents is (θ, d), then the agents implement it in

their local coordinate frame by each of them changing their

orientation by the same angle θ and advancing by the same

distance d to reach the final destination xif . Even in this

figure it can be seen that by doing this the agents have come

closer to each other. Our objective is to determine a (θ, d)
such that the agents can achieve the closest proximity with

each other.

Theorem 1: For two agents, for all initial conditions of the

agents except when θ10 = θ20, there exists a control (θ, d)
using which point convergence can be achieved.

x
10

x
20

xi0

θ
10

θ
20

θi0θ

θ

θ
d

d

d
x
2f

x
1f

xif

Fig. 1. Basic configuration

Note that this result is also available in Bretl [6] and is

stated here for completion. The above theorem shows that it

is possible to use a broadcast control command to make two

agents meet at the same location simultaneously for almost

all initial conditions. However, the solution is also unique

and hence the location of the meeting point cannot be chosen

arbitrarily. One can also interpret this result by noting that

the final meeting point is on the Voronoi edge (equidistant

line) between the two initial positions of the agents. It can

be shown that only one unique point on the Voronoi edge

satisfies the requirement that the orientation change angle

is the same for both the agents (see Fig. 2). The point p

moves on the equidistant line from −∞ to +∞ and the

corresponding orientation angle change θ is plotted for the

two agents. The intersection of the two curves is the unique

control command point. It can be seen that when the number

p

d d

+Inf

θ1
θ10

θ20

θ2

-Inf
p∗ +Inf−Inf

3π/2−θ
20

p

θ

θ
∗

Agent - 1

Agent - 2

π−θ
20

2π−θ
10

3π/2−θ
10

5π/2−θ
20

π/2−θ
10

Fig. 2. Voronoi interpretation

of agents is more than two, each pair gives rise to a different

unique meeting point. Thus, there does not exist a common

control command to be broadcast so that all the agents meet

at a point. In the absence of such a command, the best that

can be done is to determine a (θ, d) which brings the agents

in closest proximity with each other. Note that in this case

(θ, d) may not be unique.

In the next two sections we will propose solutions to

overcome both the drawbacks without compromising the

broadcast based control mechanism.

III. A LINEAR PROGRAMMING FORMULATION

Let the initial position and initial orientation of the n

agents be xi0 = (pi1 pi2) ∈ R
2 and θi ∈ (−π, π],

respectively, for all i ∈ {1, ..., n}. As before, we define the

control command to be broadcast as (θ, d). We define our

performance measure as the half length, denoted by r > 0,

5732

of the side of a square oriented along the global coordinate

frame, and containing all the final positions of the agents.

Let this square be centered at z = (z1, z2) ∈ R
2.

Assuming that all the agents execute the command (θ, d),
their final positions, given by xif = [qi1 qi2] ∈ R

2 will be,

xif = xi0 + R(θi0)R(θ)

[

d

0

]

(1)

That is,
[

qi1

qi2

]

=

[

pi1

pi2

]

+

[

cos θi0 − sin θi0

sin θi0 cos θi0

] [

u1

u2

]

(2)

where, u1 = d cos θ and u2 = d sin θ are the control

variables that replace (θ, d). Note that Eqn. (2) are linear

equations. Now, we formulate the linear programming prob-

lem as,

Minimize r

Subject to

−r ≤ pi1 + u1 cos θi0 − u2 sin θi0 − z1 ≤ r (3)

−r ≤ pi2 + u1 sin θi0 + u2 cos θi0 − z2 ≤ r (4)

i = 1, . . . , n.

r ≥ 0 (5)

The above is a linear programming problem with the

decision vector as (r, z1, z2, u1, u2). Note that the decision

vector remains same irrespective of the number of agents.

Only the number of inequality constraint increases with the

number of agents. Also, note that z1,z2,u1 and u2 are free

variables and can take both positive or negative values.

IV. SOME RESULTS ON THE FORMATION OF AGENTS

After executing the LP the distance between i and j agent

along x-axis and y-axis will be

dxij
= (pi1 − pj1) + d(cos(θi + θ) − cos(θj + θ))

= (pi1 − pj1) + dC (6)

dyij
= (pi1 − pj1) + d(sin(θi + θ) − sin(θj + θ))

= (pi1 − pj1) + dS (7)

where, C = (cos(θi + θ)− cos(θj + θ)), S = (sin(θi + θ)−
sin(θj + θ)) and i, j ∈ {1 . . . n}. Thus the resulting distance

along x-axis and y-axis are dictated by the value of C and

S.

After executing the LP, the new formation of the agent

obtained is of interest. Below, we investigate some properties

of the formation. For this let us define the span of the

formation along X and Y axis as follows: Let (xi, yi) be

the position of the agents, where i ∈ I = {1, . . . , n}.

Then define xmax = max{xi}i∈I , xmin = min{xi}i∈I ,

ymax = max{yi}i∈I and ymin = min{yi}i∈I . Then the

span of the formation along the X and Y axis are given by,

Sx = xmax − xmin

Sy = ymax − ymin

The formation is said to be square if Sx = Sy and rectangular

otherwise. Essentially, the spans are the length of the sides

of the minimal rectangle that contains the position of all the

agents. Note that the LP problem attempts to minimize the

quantity r = max{Sx, Sy}.

We first consider a very special case with three agents.

Let us assume that minimal formation by three agents is a

rectangle and not necessarily a square where Sx = Sy . Then,

there are four way in which this can be occur. This is shown

in Figure 3.

(a) (b)

(c) (d)

Fig. 3. Rectangle formation by three agents (a) Two agents at corner, one
in the interior (b) Two agents at corner, one on edge (c) All the agents at
corner (d) One agent at a corner and two agents on edges

Before we prove some general results on the formation of

the agents after the LP is executed we will state a lemma

that will be useful to prove the main results.

Lemma 1: If C = cos(θi + θ) − cos(θj + θ) then there

exists a θ such that C < 0 where θi, θj ∈ (−π, π] and

θi 6= θj .

Proof: Let, θ = (π − (
θi−θj

2
) − ∆φ). After replacing

θ in C = cos(θi + θ) − cos(θj + θ) we will get C =

−2 sin(
θi−θj

2
) sin(∆φ). It is clear from the expression that

we can make C < 0 by choosing ∆φ properly.

Theorem 2: After executing the LP, square is the optimal

formation for three agents.

Proof: We will prove this by contradiction. Suppose

after executing the LP, the optimal formation is a rectangle.

Let the position and orientation of the three agents be xi0 =
(pi01, pi02) ∈ R

2 and θi0 ∈ (−π, π], respectively, for all

i ∈ {1, 2, 3}. Let agents k and l be on the left edge and

right edge of the rectangle. Without loss of generality, we

can assume Sx0 > Sy0 and ∆d < 1

4
min{(Sx0 − Sy0), |

pio1−pjo1 |}, where i, j ∈ {1, 2, 3}. Let us define a broadcast

control command (θ, ∆d) such that ∆d > 0 is very small.

After broadcasting (∆d, θ), for some θ, the new positions

will be

pi11 = pi01 + ∆d cos(θi0 + θ)

pi12 = pi02 + ∆d sin(θi0 + θ)

The new dimensions of the rectangle are given by Sx1 and

Sy1, where Sx1 = pk11 − pl11. As Sx0 > Sy0 and ∆d <
1

4
min{(Sx0 − Sy0), | pio1 − pjo1 |} then Sy1 < Sx1.

Sx1 = Sx0 + ∆d{cos(θk + θ) − cos(θl + θ)}

= Sx0 + ∆dC

5733

According to Lemma 1, there always exists θ such that C <

0. As C < 0 then Sx1< Sx0. This implies that there exist a

broadcast command (∆d, θ) such that the maximum length

of the sides of the rectangle can be further reduced. This

implies that the optimal solution of the LP problem for three

agents can not yield a rectangle. It has to be a square.

This proof is valid for Fig. 3(a), 3(b) and 3(d). The proof

for Fig. 3(c) will be taken care of by the next Theorem.

Theorem 3: When the initial conditions are such that only

one agent is on one edge of the longer span and m agents

(m > 1) are on the other edge of the larger span, then the

LP solution leads to a square formation.

Sx

Sy

1

2

i

m-1

m

j

++

- -

ψ
max

ψ
min

ψ
min

+ π

ψ
max

+ π

(a) (b)

Fig. 4. An illustration for the proof of Theorem 3.

Proof: Consider Fig. 4 where Sx > Sy . The X distance

between agent j and the other m number of agent Sx =
pj1−pi1, where i ∈ {1, . . .m}. Let ∆d < 1

4
(Sx−Sy). After

broadcasting (∆d, θ), the new dimensions of the rectangle

are S
′

x and S
′

y . Since ∆d < 1

4
(Sx − Sy), we have S

′

y < S
′

x.

We can write

S
′

x = pj1 − pi1 + ∆d(cos(θj − θ) − cos(θi − θ))

= Sx + ∆dR sin(Φi + θ) (8)

where Φi =
(θj+θi

2

)

and R is a positive quantity. For a

particular θj we will get a set of angles {Φi} for m agents.

Let Φmax = max{Φi} and Φmin = min{Φi}. Note that θi

is fixed here. Let θj1 contribute to Φmax and θj2 contribute

to Φmin. Then Φmax =
θj1+θi

2
and Φmin =

θj2+θi

2
. So

Φmax − Φmin =
θj1−θj2

2
≤ π. We will get S

′

x < Sx, when

sin(Φi + θ) < 0. The set of angles {Φi} will be within a

bounded envelope of (0, π) as Φmax −Φmin ∈ (0, π). Then

there always exist an angle θ such that all the envelope will

come in the lower two quadrants such that all sin(Φi + θ) <

0. This implies that there S
′

x < Sx. Thus the LP solution

cannot yield a rectangular formation since there will be

another formation which can be achieved by broadcasting

and which will have a smaller value of max{Sx, Sy}.

However, there may not exist a solution when

the number of agents on the opposite edges are

more than two. As an example we can show

that four agents with position and orientation of

((4.004, 3.9128), 0o), ((4.015, 2.8264), 5o),((0.0024, 0.9302)
,−1o) and ((0.0049, 1.9007), 0.7o) will be move to

((5, 4), 5o, ((5, 3), 10o), ((1, 1), 4o), ((1, 2), 5.7o).
Although r decreases from 2.0064 to 2 but Sx 6= Sy. The

reason behind this can be explained as follows:

Let agent j and k be on one edge and a set of agent {i} on

the opposite edge where i ∈ {1, . . . ,m}. For agent j there

will be a set of angles {Φij} and for agent k there will be

a set of angles {Φik}. For agent j, Φmaxj
= max{Φij} and

Φminj
= min{Φij} and for agent k, Φmaxk

= max{Φik}
and Φmink

= min{Φik}. The range of Φmaxj
− Φminj

and Φmaxk
− Φmink

will both be (0, π). Now, the range of

max{{Φij} ∪ {Φij}}−min{{Φij} ∪ {Φij}} will be greater

than (0, π). In which case there does not exist any common

θ such that the X or Y axis distance will be reduced. They

will remain at the same position after executing the LP.

Theorem 4: If the solution of the LP problem yields a

square formation then the number of agents on the boundary

of the square is more than two.

η
1

η
2

η
3

η
4

A

B

D

C

F

M

N

Fig. 5. An illustration for the proof of Theorem 4.

Proof: We will prove this by contradiction.Let, the

number of agent on the square are two and they are located at

diagonally opposite corners. The other agents are the interior

of the square. For the sake of simplicity we will consider

only three agents. This is given in Fig. 5,where MN is the

Voronoi edge between agents located at A and B. According

to Theorem 1, there always exists (θ, d) such that they can

meet at an unique point on the Voronoi edge (MN). Let

the unique meeting point be F . Let us define a very small

positive quantity ∆d such that ∆d < min 1

4
{η1, η2, η3, η4}.

After broadcasting (θ, ∆d) the agents will move from their

positions. The new position of agents A and B are C and

D, respectively. The interior agent will remain in the interior

of the square. CD is the new diagonal of the square. We

can show that △ABF ∼ △CDF and so CD‖AB and

CD < AB. This implies that further improvement of the

square is possible. This is a contradiction.

V. ACHIEVING PERFECT CONSENSUS

The solution of the linear programming (LP) problem will

yield control instructions which can be broadcast to all the

agents. The agents will move to a new position or within a

new square region of smaller area. It can be shown that no

further improvement of the performance (reduction in r) can

be achieved by repeated use of the algorithm. In other words,

repeated application of the LP algorithm with the new final

positions will not reduce the value of r any further.

Suppose we represent the LP algorithm as an operation L

on the initial conditions that yields the solution as,

L(xi0, θi0|i = 1, . . . , n) = (u∗

1, u
∗

2, r∗, xif , θif) (9)

5734

then,

L(xif , θif |i = 1, . . . , n) = (0, 0, r∗, xif , θif) (10)

That is, there will be no further change in the performance

measure r. In other words, (xif , θif) is a stationary point so

far as the LP algorithm is concerned.

We can generalize this process by assuming that each step

in the iteration is denoted by the index k, with the first step

in the iteration as k = 1. We call this the unperturbed case as

the solution of the LP is directly implemented by the agents

without any perturbation to the solution.

Theorem 5: In the unperturbed case, for k ≥ 2, u∗

1,k =
u∗

2,k = 0 and xi,k+1 = xi,k; θi,k+1 = θi,k. This means that

repeated use of the LP solution on subsequent positions will

not reduce r.

Proof: We will prove this by contradiction. Suppose

for a given initial condition (x1
i0, θ

1
i0) we have r = r0 as

the measure of proximity of the agents. Applying the LP

algorithm we obtain u1∗
1 , u1∗

2 , r1, and the final positions

as (x1
if , θ1

if). Now, considering the initial conditions as

(x2
i0, θ

2
i0) = (x1

if , θ1
if) and applying the LP algorithm let

us assume that we get u2∗
1 6= 0, u2∗

2 6= 0, r2 < r1,

and the final positions as (x2
if , θ2

if). Then, let us define

ûi = u1∗
i + u2∗

i , i = 1, 2. It can be shown that if in the first

step ûi is used it would yield a r = r2 < r1, which implies

that r1 was not a solution to the LP. This is a contradiction.

Now, consider a perturbed case where, the agents receive

a broadcast command containing the LP solution and a

command to randomly perturb the final orientation angle

after the LP solution has been implemented. This process

is shown in Figure 6, where, the orientation angle, after

implementing the LP solution is perturbed by each agent

as follows,

θ̂i,k+1 = θi,k+1 + νi,k+1 (11)

where, the perturbation angle νi,k+1 is given by νi,k+1 =
ηiβ. ηi is a random number generated by each agent inde-

pendently and β is a scaling angle which is common to all

the agents. The scaling angle can be set manually and η can

be generated through various distributions. Here, we consider

both normal distribution and uniform distribution.

θ
i,k

ν
i,k

θ
i,k

LP LP

x
ik

(u
1k

∗
,u

2k
∗) (u

1,k+1
*
,u

2,k+1
*)

(x
1,k+1

,θ
1,k+1

)

Global Global
Broadcast Local Broadcast

1

n

(x
i,k+1

, θ
i,k+1

)

(x
n,k+1

,θ
n,k+1

)

i

ν
i,k+1

ν
1,k+1

ν
n,k+1

Fig. 6. The perturbed case

VI. ACHIEVING POSITIONAL CONSENSUS AT DESIRED

POINT

In the previous section, we consider the problem of posi-

tional consensus, but did not have control over at which the

agents can meet. Suppose we have a pre-specified meeting

point then we can achieve this by slightly modifying the

previous formulation. In this modified form we define the

meeting point as the center of the agent formation and is

denoted by (z1, z2). Now the input to the LP are the initial

positions, initial orientation and the meeting point. We can

formulate the modified linear programming problem as,

Minimize r

Subject to

−r ≤ pi1 + u1 cos θi0 − u2 sin θi0 − z1 ≤ r (12)

−r ≤ pi2 + u1 sin θi0 + u2 cos θi0 − z2 ≤ r (13)

i = 1, . . . , n.

r ≥ 0 (14)

The above is a linear programming problem with the

decision vector as (r, u1, u2). Note that the number of

decision variables has reduced over the previous formula.

In the next section we will give simulations results.

VII. SIMULATION RESULTS

In the first set of simulations we start with three

agents. Initially we consider ((1, 1), 45o), ((5, 4), 135o), and

((2, 6),−45o) as the initial position and orientation angle

of the three agents. Using the perturbation technique, with

normal distribution for η and a scaling angle of β = 120o,

the agents converge to a point after a few iterations (see

Fig. 7). The variation in the x and y coordinates of the

three agents against the number of iterations are also shown.

The convergence criterion for terminating the simulation was

when the value of r became less that 2×10−4. We continue

1 2 3 4 5
1

2

3

4

5

6

X−AXIS

Y
−

A
X

IS

Agent−1

Agent−2

Agent−3

0 5 10 15 20 25
0

0.5

1

1.5

ITERATON

r

(a) (b)

Fig. 7. Consensus with three agents (a) Trajectory of the agents (b)
Reduction in r with iteration

with our study with three agents. In Fig. 8 we plot the average

number of iterations needed, and the average length of path

traveled by each agent, to achieve convergence, as a function

of the scaling angle β for the two cases when the random

number η is generated by a uniform distribution or by a

normal distribution. These results are given by averaging

over 200 trials. We also plot the standard deviations. From

these results we can conclude that using larger scaling angle

reduces r faster than when the scaling angles are small. Also,

using normal distribution gives better results than uniform

distribution.

Next, we consider larger number of agents (10 and 15).

We use normal distribution and scaling angle of 180o for

the perturbation. The convergence criterion is also relaxed

5735

0 50 100 150
0

500

1000

1500

SCALING ANGLE(deg)

IT
E

R
A

T
IO

N

Uniform

Normal

0 50 100 150
0

10

20

30

40

SCALING ANGLE (deg)

P
A

T
H

 L

E
N

G
T

H

(u
n

it
)

Uniform

Normal

(a) (b)

0 50 100 150
0

500

1000

1500

2000

2500

SCALING ANGLE(deg)

IT
E

R
A

T
IO

N

0 50 100 150
0

200

400

600

800

SCALING ANGLE (deg)

IT
E

R
A

T
IO

N

(c) (d)

0 50 100 150
0

10

20

30

40

50

SCALING ANGLE (deg)

P
A

T
H

 L

E
N

G
T

H

(u
n

it
)

0 50 100 150
0

5

10

15

20

25

30

35

SCALING ANGLE (deg)

P
A

T
H

 L

E
N

G
T

H

(u
n

it
)

(e) (f)

Fig. 8. Convergence results (a) Average number of iterations (b) Average
length of path (c) Standard deviations for number of iterations: Uniform
distribution (d) Standard deviations for number of iterations: Normal dis-
tribution (e) Standard deviations for path length: Uniform distribution (f)
Standard deviations for path length: Normal distribution

to r ≤ 0.1. The results are shown in Figure 9. These results

show that the computation time and the number of iterations

rises with the number of agents. This is expected since

the complexity of the algorithm is same as that of the LP

algorithm.

To demonstrate the result that the agents can be meet

any pre-specified point, we consider same set of initial

position and orientation angle(((1, 1), 45o), ((5, 4), 135o),
and ((2, 6),−45o)) of the three agents. The meeting point

we set as origin (0, 0). The result is illustrated in Fig. 10.

VIII. CONCLUSIONS

In this paper we considered the problem of controlling a

group of agents to converge at a location using only broadcast

control input (identical control) for all the agents. The results

shows that it is possible for a group of agents to meet at a

location by sending them a sequence of simple and exactly

identical instruction. The location point can be pre-specified.

We were able to show that introducing a perturbation in

the broadcast command helped to achieve point convergence

which was not possible earlier. We also proposed a novel

linear programming based solution approach that is compu-

tationally less intensive than the SOCP technique proposed in

the literature. There are several opportunities for future work

in this direction. It seems possible to extend this work to

consider process noise, sensor uncertainty, and the presence

of obstacles in the environment. Moreover, the algorithm can

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5

r

Iteration
−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

Y
−

a
x

is
 p

o
s

it
io

n

X−axis position

(a) (b)

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

r

Iteration
−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Y
−

a
x

is
 p

o
s

it
io

n

X−axis position

(c) (d)

Fig. 9. Convergence results (a) r vs number of iterations for 10 agents
(b) Trajectory for 10 agents (c) r vs number of iterations for 15 agents (d)
Trajectory for 15 agents

−6 −4 −2 0 2 4 6

−4

−2

0

2

4

6

X−AXIS

Y
−

A
X

IS

Agent−1

Agent−2

Agent−3

0 20 40 60 80
0

1

2

3

4

5

6

ITERATON

r

(a) (b)

Fig. 10. Consensus with three agents at specified point (a) Trajectory of
the agents (b) Reduction in r with iteration

most probably shown to be robust to failures in terms of

packet loss or failure of agents.

REFERENCES

[1] T. Vicsek, A. Czirok, E. B. Jacob, I. Cohen and O. Schochet, Novel
type of phase transistions in a system of self-driven particles , Phys.

Rev. Lett., vol. 75, 1995, pp 1226-1229.
[2] G. Antonelli, and S. Chiaverini, Kinematic control of platoons of

autonomous vehicles, IEEE Trans. Robotics and Automation, vol.
22(6), 2006, pp 1285-1292.

[3] B. V. Gervasi and G. Prencipe, Coordination without communication:
The case of the flocking problem, Discrete Applied Mathematics, vol.
143, 2004, pp 203-223.

[4] M. Cieliebak, P. Flocchini, G. Prencipe and N. Santoro, Solving the
robots gathering problem , In Proc. 30th Int. Colloq. on Automata,

Language and Programming, 2003, pp 1181-1196.
[5] I. Suzuki and M. Yamashita, Distributed anonymous mobile robots ,

SIAM J. on Computing , vol. 28, 1999, pp 1347-1363.
[6] T. Bretl, ”Control of Many Agents Using Few Instructions”, in Third

Robotics Science and System Conference , Atlanta, 2007.
[7] B.R. Donald, C.G. Levey, C.D. Mcgray, I. Paprotny and D. Rus, An

untethered,electrostatic, globally controllable MEMS micro-robot, J.

Microelectromech. Syst, vol. 15(1), 2006, pp 1-15.
[8] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge

University Press, 2004.
[9] H. Ando, Y. Oasa and I. Suzuki, Distributed Memoryless Point

Convergence Algorithm for Mobule Robots with Limited Visibility,
IEEE Tran. of Robotics and Automation, vol. 15(5), 1999, pp 818-
828.

[10] W. Rudin, Principles of Mathematicla Analysis, McGRAW-HILL
Book Company, 1976.

5736

RandomizationMechanisms Based Positional Consensus in
Homogeneous Multi-Agent Systems

KaushikDasa,b, Debasish Ghosea

aGuidance, Control, and Decision Systems Laboratory, Department of Aerospace Engineering, Indian Institute of Science, Bangalore
bCorresponding Author

Abstract: In this paper we present a modified broadcast control algorithm for controlling a
group of homogeneous agents to achieve positional consensus. We make an assumption that
the agents are capable of generating a flag which indicates whether agent will be active or pas-
sive. This proposed technique is based on the constraint that all agents must be given the same
control input through a broadcast communication mechanism. The control command is com-
puted using state information of active agents or active and passive agents in a global frame-
work. The control input is implemented by the active agents in a local coordinate frame. We
propose some modified broadcast control mechanisms based on linear programming with or
without introducing random perturbation in the orientation of the active agents. We show that
even without introducing perturbation in the orientation angle positional consensus is possible
if we adopt random flag setting. We make a comparison between several algorithm that have
been designed as combinations of the two randomization mechanism. Moreover, we extend
the method to achieve positional consensus through this modified algorithm at a pre-specified
point. The effectiveness of the approach is illustrated through simulation results.

Key words: Multi-agent systems, Linear Programming, Broadcast Communications

1. INTRODUCTION

The principle of using multiple agents is motivated by the
idea that instead of using a highly sophisticated and expen-
sive agent, it may be advantageous in certain situations to use
a group of small, simple, and relatively cheap agents. The
group of agents can be used to accomplish various tasks in
different environment such as tactical operations, exploratory
space missions, remote monitoring with mobile sensor net-
works, avoidance of collision and over-crowding in auto-
mated air traffic control, cleanups of toxic spills, fire fighting
and cooperative search with unmanned air vehicles.

One of the problems that is of paramount importance in
multi-agent systems is that of achieving consensus, that is,
achieving identical values for some specified subset of the
states of the agents. For instance, the agents may try to con-
verge to the same direction of movement [1] or they might
want to converge to a point. Both are problems in achieving
consensus. If we have a centralized system with perfect in-
formation, then achieving consensus is a trivial matter, since
the central controller can instruct each agent suitably to reach

Email addresses:kaushikdas@aero.iisc.ernet.in (Kaushik
Das),dghose@aero.iisc.ernet.in (Debasish Ghose)

1This project is partially supported by AOARD/AFOSR.

a common consensus point. However, if the communication
system has a constraint on the number of messages that it
can communicate, then one may opt for a broadcast proto-
col where the central controller will communicate simple and
identical instructions to all the agents through a broadcast
mechanism. This is the framework in which we address the
problem of consensus in this paper. Other papers that address
similar problem are [2, 3, 4, 5].

This problem we address in the paper was motivated by a
recent paper by Bretl [6] where a control strategy for a group
of micro-robots is developed to perform a useful task even
when every robot receives the same control signal. The paper
considers point robots with simple kinematics. It was shown
that when there are only two agents, there exists a broad-
cast control command (that is, both agents receive identi-
cal instructions from the central controller) using which both
agents can meet at the same location at the same time, for al-
most all initial conditions. However, if the number of agents
is more than two, then the best that the agents can achieve is
to come close to each other within a certain distance (mea-
sured by the radius of the smallest disc that contains all the
agents positions), which is a function of the initial conditions.
Bretl [6] formulates an optimization problem that minimizes
the radius of the disc, and proposes a solution using the sec-

Proceedings of ICEAE 2009

RandomizationMechanisms Based Positional Consensus in Homogeneous Multi-Agent Systems

ond order cone programming (SOCP) technique [7]. How-
ever, using this strategy the agents cannot be made to con-
verge to a point. Once the solution of the SOCP is imple-
mented, no further improvement is possible.

Bretl’s paper was in turn motivated by an interesting pa-
per by Donald et al. [8] on the development of untethered,
steerable micro-robots, where every robot receives the same
power and control signal through an underlying electrical
grid. These robots mainly have two parts. One is an un-
tethered scratch drive actuator used mainly for forward loco-
motion. The other part is a cantilevered steering arm used for
turning through frictional contact with the substrate. These
micro-robots are simple in construction and can operate only
in a local coordinate frame. They do not have sensory ca-
pabilities to determine their position and orientation in the
global coordinate frame. Neither do they have capabilities to
localize themselves in relation to their neighboring objects or
other robots.

Based on the above paradigm Das and Ghose [9] proposed
a strategy that uses the basic Bretl’s model with an addi-
tional randomization feature that introduced a random per-
turbation on the angular orientation of the agents to achieve
positional consensus or point convergence on repeated ap-
plication of the algorithm without compromising the broad-
cast constraint on the control command. This method has
extended to the case where the agents can be made to con-
verge to any pre-specified point. The paper [9] also proposes
an optimization problem for this task that is based on a lin-
ear programming formulation instead of SOCP technique and
shows improved computational performance. However, the
proposed LP based method with the randomization feature
had a serious drawback when the number of agents is very
large. This was observed in simulations carried out in [9]. In
the present paper we introduce another randomization feature
that not only introduces a random perturbation to the agents’
angle but also sets a flag that randomly assigns active or pas-
sive role to the agents, where an active agent implements the
broadcast control while the passive agents ignore it. We show
that this additional features helps in achieving consensus or
point convergence of even large number of agents.

2. FORMULATION AND SOLUTION FOR TWO
AGENTS

We will first pose the problem in a general framework and
then address the two agents case to clarify many of the as-
sumptions and concepts discussed in the previous section.

Assume thatn agents are located on an obstacle-free plane.
We assume that the central controller has access to the global
state of the system which, in this case, consists of the posi-
tion (xi ∈ R2) and orientation (θi ∈ (−π, π]) of the agents,
i = 1, . . . ,n. The central controller computes a common lo-
cal control for the agents and broadcasts it to the agents for
implementation. The local control is in the form of a tuple
(θ,d), which is interpreted by each agent in its local frame
of reference. Here,θ refers to the angle by which each agent

x
10

x
20

x
i0

θ
10

θ
20

θ
i0

θ

θ

θ
d

d

d
x
2f

x
1f

x
if

Figure1: Basic configuration

changes its orientation, andd is a scalar that refers to the dis-
tance by which each agent moves after effecting the orienta-
tion change. Note that due to the broadcast mechanism (θ,d)
is the same for all the agents. Also, the local frame of refer-
ence for each agent is centered at the agent’s location and its
reference axis is oriented along its current orientation. As an
illustration see Fig. 1, where agents are shown located ini-
tially at xi0 with initial orientationθi0 in the global reference
frame.

If the control command broadcast to all the agents is (θ,d),
then the agents implement it in their local coordinate frame
by each of them changing their orientation by the same angle
θ and advancing by the same distanced to reach the final
destinationxi f . Even in this figure it can be seen that by doing
this the agents have come closer to each other. Our objective
is to determine a (θ,d) such that the agents can achieve the
closest proximity with each other.

Theorem 1. For two agents, for all initial conditions of the
agents except whenθ10 = θ20, there exists a control(θ, d)
using which point convergence can be achieved.

Proof. From Fig. 1, assuming only two agents, we have,

xi f = xi0 + R(θi0)R(θ)

[
d
0

]
, i = 1,2 (1)

where,R(α) is the rotation matrix,

R(α) =

[
cosα − sinα
sinα cosα

]
(2)

Letting x1 f = x2 f we obtain,

R(θ)

[
d
0

]
= [R(θ20) − R(θ10)]

−1 (x10 − x20) (3)

The above equation can be solved easily ford andθ if the
inverse on the right hand side exists, which happens when
θ10 , θ20.

The above theorem shows that it is possible to use a
broadcast control command to make two agents meet at the
same location simultaneously for almost all initial conditions.
However, the solution is also unique and hence the location
of the meeting point cannot be chosen arbitrarily.

Proceedings of ICEAE 2009

1328

Kaushik Das, Debasish Ghose

It can be seen that when the number of agents is more than
two, each pair gives rise to a different unique meeting point.
Thus, there does not exist a common control command to be
broadcast so that all the agents meet at a point. In the absence
of such a command, the best that can be done is to determine
a (θ,d) which brings the agents in closest proximity with each
other. Note that in this case (θ,d) may not be unique.

In the next two sections we will propose a linear program-
ming based solution and a randomized mechanism to obtain
consensus without compromising the broadcast based control
mechanism.

3. A LINEAR PROGRAMMING SOLUTION FOR
MULTIPLE AGENTS

Let the initial position and initial orientation of thenagents
be xi0 = (pi1 pi2) ∈ R2 andθi ∈ (−π, π], respectively, for all
i ∈ {1, ...,n}. As before, we define the control command to
be broadcast as (θ,d). We define our performance measure
as the half length, denoted byr > 0, of the side of a square
oriented along the global coordinate frame, and containing all
the final positions of the agents. Let this square be centered
atz = (z1, z2) ∈ R2.

Assuming that all the agents execute the command (θ,d),
their final positions, given byxi f = [qi1 qi2] ∈ R2 will be,

xi f = xi0 + R(θi0)R(θ)

[
d
0

]
(4)

That is,
[

qi1

qi2

]
=

[
pi1

pi2

]
+

[
cosθi0 − sinθi0

sinθi0 cosθi0

] [
u1

u2

]
(5)

where,u1 = dcosθ andu2 = dsinθ are the control variables
that replace (θ,d). Note that Eqn. (5) are linear equations.
Now, we formulate the linear programming problem as,

Minimize r

Subject to

−r ≤ pi1 + u1 cosθi0 − u2 sinθi0 − z1 ≤ r (6)

−r ≤ pi2 + u1 sinθi0 + u2 cosθi0 − z2 ≤ r (7)

i = 1, . . . ,n.

r ≥ 0 (8)

The above is a linear programming problem with the deci-
sion vector as (r, z1, z2,u1,u2). Note that the decision vector
remains the same irrespective of the number of agents. Only
the number of inequality constraint increases with the num-
ber of agents. Also, note thatz1,z2,u1 andu2 are free variables
and can take both positive or negative values. An illustration
of this process is shown in Figure 2.

The solution of the linear programming (LP) problem will
yield control instructions which can be broadcast to all the
agents using which the agents will move to a new position or
within a new square region of smaller area, that is, a square

x
10

x
20

x
i0

θ
10

θ
20

θ
i0

θ

θ

θ
d

d

d
x
2f

x
1f

x
if

Figure 2: An illustration of how the square reduces in size using the LP
solution

with a reduced side length. It can be shown that no further
improvement of the performance (that is, reduction inr) can
be achieved by repeated use of the algorithm.

Suppose we represent the LP algorithm as an operationL
on the initial conditions that yields the solution as,

L(xi0, θi0|i = 1, . . . ,n) = (u∗1,u
∗
2, r∗, xi f , θi f) (9)

then,

L(xi f , θi f |i = 1, . . . ,n) = (0,0, r∗, xi f , θi f) (10)

That is, there will be no further change in the performance
measurer. In other words, (xi f , θi f) is a stationary point so
far as the LP algorithm is concerned.

We can generalize this process by assuming that each step
in the iteration is denoted by the indexk, with the first step in
the iteration ask = 1. Then we can represent the process as
in Figure 3. We call this theunperturbed caseas the solution
of the LP is directly implemented by the agents without any
perturbation to the solution. The following result has been
proved in [9] and is stated here for completion.

Theorem 2. In the unperturbed case, for k≥ 2, u∗1,k = u∗2,k =

0 and xi,k+1 = xi,k; θi,k+1 = θi,k. This means that repeated use
of the LP solution on subsequent positions will not reduce r.

LP LP

x
ik

θ
ik

(u
1k

∗
,u

2k
∗)

(u
1,k+1

∗
,u

2,k+1
∗)

(x
1,k+1

,θ
1,k+1

)

Global GlobalBroadcast Local

Broadcast

1

n

(x
i,k+1

, θ
i,k+1

)

(x
n,k+1

,θ
n,k+1

)

i

Figure3: Generalization of the unperturbed case

4. RANDOMIZATION MECHANISMS

Now, consider aperturbed casewhere the agents use a
randomization mechanism to modify their states and imple-
ment broadcast command containing the LP solution. The

Proceedings of ICEAE 2009

1329

RandomizationMechanisms Based Positional Consensus in Homogeneous Multi-Agent Systems

θ
i,k

ν
i,k

θ
i,k

LP LP

x
ik

(u
1k

∗
,u

2k
∗) (u

1,k+1

*
,u

2,k+1

*)

(x
1,k+1

,θ
1,k+1

)

Global Global
Broadcast

Local
Broadcast

1

n

(x
i,k+1

, θ
i,k+1

)

(x
n,k+1

,θ
n,k+1

)

i

ν
i,k+1

ν
1,k+1

ν
n,k+1

Figure4: Perturbation in angle

randomization mechanism contains two components, in one
of which a random perturbation is introduced in the orienta-
tion angle of the agent and in the other a flag is set by which
an agent designates itself as active or passive. In the angle
perturbation case, the final orientation of each agent is per-
turbed and is used by the central controller to implement the
LP algorithm. This process is shown in Figure 4, where, the
orientation angle, after implementing the LP solution is per-
turbed by each agent as follows,

θ̂i,k+1 = θi,k+1 + νi,k+1 (11)

where, the perturbation angleνi,k+1 is given by,

νi,k+1 = ηiβ (12)

where,ηi is a random number generated by each agent in-
dependently andβ is a scaling angle which is common to
all the agents. The scaling angle can be set manually andη
can be generated through various distributions. In Eqn. (11)
νi,k+1 represents the perturbation angle. The perturbation an-
gle for different agents are different. This kind of random
mechanism has been studied in [9] and has been found to be
deficient when the number of agents is large, as they do not
come closer than a certain value even after a large number of
iterations.

The main idea behind the flag setting approach is that each
agent (i) randomly generates a flagfi , that can take one of
two values. One is high (fh), denoting an active agent and
other is low (fl), denoting a passive agent. The set of agents
that have high flags (active) is denoted byRa and the set of
agents that have low flags (passive) isRp.

Let the set of active agents at timet beRa(t) = {i | fi = fh}
and the set of passive agents at timet beRp(t) = {i | fi = fl}
wherei ∈ {1, . . . ,n}. An active agent is one that will imple-
ment the broadcast command and change its state whereas a
passive agent will ignore the command and remain stationary.
The flag value for each agent may or may not be observed
by the central controller (CC). The central controller have
information of position and orientation of all the agents (ac-
tive and passive) at each step. The control command (u∗

1,u∗2)
computed by the central controller will be broadcast to all the
agents, but only the active agents will move.

Let the position-orientation of active and passive agents
be (xa,k, θa,k) and (xp,k, θp,k), respectively. After receiving the

broadcast command the new position of the active and pas-
sive agents are

xa,k+1 = xa,k + R(θa,k)R(θ)

[
d
0

]
(13)

xp,k+1 = xp,k (14)

where (θ, d) is the broadcast control command.

5. ALGORITHMS

In this section we will propose five different algorithms ob-
tained as combination of the two randomization mechanisms
described in the previous section. They are denoted asA,
(A,FO), (A,FN), FO, FN and are shown in Fig. 5. The al-
gorithmA that introduced perturbation only in the angle has
been studied in [9].

Angle Flag

Observed by

 CC

 Not

Observed by

 CC

A F

F
O

Randomization

F
N

CC : Central Controller

Figure5: Taxonomy of the randomization mechanism based algorithm

5.1. Algorithm (A, FO)
In this case, the active agents inRa(t) whose flag is high

will perturb its orientation randomly. Then, the central con-
troller will observe the positions, orientations and flags of all
agents, but will compute the control command (θ, d) using the
position and orientation of the active agents only. The control
command will be broadcast to all the agents. After receiving
the control command only the active agents will change their
state. The passive agents will remain stationary. This implies
that,

L((xa,k, θ̂a,k)) = (u∗1,u
∗
2) (15)

where,̂θa,k = θa,k + νa,k.

5.2. Algorithm (A, FN)
In this case also the flag will be set randomly, as well as

the orientation. However, the central controller does not have
access to the flag information and will compute the control
command (θ,d) using positions and orientations of both the
active agents and passive agents. The control command will
be broadcast and all the active agents will move from their
respective positions. This implies that,

L((xa,k, θ̂a,k), (xp,k, θp,k)) = (u∗1,u
∗
2) (16)

where,̂θa,k = θa,k + νa,k.

Proceedings of ICEAE 2009

1330

Kaushik Das, Debasish Ghose

5.3. Algorithm (FO)
In this case the flags of the agents will be set randomly

but the orientation will not be perturbed. The central con-
troller will observe the flags, positions and orientations of
all the agents and compute the control command for the ac-
tive agents only. The central controller will broadcast control
command and all active agents will move from their respec-
tive positions. This implies that,

L(xa,k, θa,k)) = (u∗1,u
∗
2) (17)

Note that in this case there is no perturbation in the agent
orientation.

5.4. Algorithm (FN)
In this case also the flag of the agents will be set randomly,

but orientation will not be perturbed. The central controller
will observe positions and orientations of all the agents and
compute the control command based on the position and ori-
entation of all agents. The central controller will broadcast
the control command to all the agents but only the active
agents will implement these and will move.

L((xa,k, θa,k), (xp,k, θp,k)) = (u∗1,u
∗
2) (18)

We put all the above algorithms in a tabular form in Table 1.

Table 1: The different performance for the algorithm (Y= Yes ; N= No)
Random LP Move-
Perturba- Random Solved ments

Algorithm tion in Flag Using of
Orientation Setting Agents Agents

A Y N all all
(A, FO) Y Y active active
(A,FN) Y Y all active

FO N Y active active
FN N Y all active

6. ACHIEVING POSITIONAL CONSENSUS AT A DE-
SIRED POINT

In the previous section, we considered the problem of po-
sitional consensus, but did not have control over the point
at which the agents can meet. In [9] a scheme has been pro-
posed to address this. We can define the meeting point (z1, z2)
of the agent formation. In this case, the input to the LP are
the initial positions, initial orientation and the meeting point.
The linear programming formulation is the same as [9]. We
can formulate the modified linear programming problem as,

Minimize r
Subject to

−r ≤ pa1 + u1 cosθa0 − u2 sinθa0 − z1 ≤ r (19)

−r ≤ pa2 + u1 sinθa0 + u2 cosθa0 − z2 ≤ r (20)

a = {i | i ∈ Ra}
r ≥ 0 (21)

The above is a linear programming problem with the deci-
sion vector as (r,u1,u2). Note that the number of decision
variables has reduced over the previous formulation.

7. SIMULATION RESULTS

In the first set of simulations consider three agents.
Initially we consider ((1,1),45o), ((5,4),135o), and
((2,6),−45o) as the initial position and orientation angle of
the three agents. Using algorithmA all three agents converge
to a point after a few iterations (see Fig. 6). The variation
in the x and y coordinates of the three agents against the
number of iterations are also shown. The convergence
criterion for terminating the simulation is gives as value ofr
becoming less that 2× 10−4.

1 2 3 4 5
1

2

3

4

5

6

X−AXIS

Y
−

A
X

IS

Agent−1
Agent−2
Agent−3

0 5 10 15 20 25
0

0.5

1

1.5

ITERATON

r

(a) (b)

0 5 10 15 20 25
1

2

3

4

5

ITERATION

X
 −

 A
X

IS

 L
O

A
C

T
IO

N

Agent−1
Agent−2
Agent−3

0 5 10 15 20 25
1

2

3

4

5

6

ITERATION

Y
−

A
X

IS

L
O

A
C

T
IO

N

Agent−1
Agent−2
Agent−3

(c) (d)

Figure 6: Consensus with three agents using algorithmA (a) Trajectory
of the agents (b) Reduction inr with iteration (c) Convergence in theX-
coordinate (d) Convergence in theY-coordinate

Next, we consider larger number of agents (5, 10, 15 and
20). The convergence criterion is also relaxed tor ≤ 0.1.
We can see after some iteration the rate of decrement of per-
formance radiusr is very small. For agents 10, 15, 20 the
performance radius is not improving after some iterations.
The results are shown in Figure 7. These results show that
the computation time and the number of iterations rise with
the number of agents. This is expected since the complexity
of the algorithm is the same as that of the LP algorithm.

Next we consider Algorithm (A,FO). Note that in this case
the control command is computed by considering only the
active agents. We consider 5 agents in this simulation. The
simulation result is given in Fig. 8. The convergence criterion
for terminating the simulation is gives as value ofr becoming
less than 0.1. The simulation result shows that the agent are
not converging to a point. In fact they seem to be sometimes
going apart from each other and sometimes coming closer.

Proceedings of ICEAE 2009

1331

RandomizationMechanisms Based Positional Consensus in Homogeneous Multi-Agent Systems

The reason behind this is the following. The central con-
troller is computing the control command based on the active
agents information only and it is independent of passive agent
information. This implies that the active agents move to a
point defined by the LP solution without taking into consid-
eration the presence of the passive agents. This leads to the
active agents moving away from the passive agents. So after
repeatedly using this algorithm the agent will not converge to
a point.

Next we consider Algorithm (A, FN). The central con-
troller does not observe the flags and considers all the agents
while compute the control command. Here we consider 5, 10,
15 and 20 agents for illustration. The convergence criterion
for terminating the simulation is the same as (A, FO). The
simulation result is given in Fig. 9. We can see that this al-
gorithm is able to bring a higher number of agents at a point.
This algorithm are opposite to previous algorithm. The rea-
son why this algorithm works better than (A, FO) is that con-
sideration of the passive agents in the LP computation keeps
the agents swarm together. Thus, not have access to the flag
information (by the central controller) actually helps in better
convergence.

Next we consider the AlgorithmFO. Here the central con-
troller observes the flag values and there is no perturbation
in orientation. Here also we take 5 agents to demonstrate
the result. The termination condition for simulations is the
same. The simulation result is given in Fig. 10. We can see
the agents do not converge to a point. The reason for not
converging is same as Algorithm (A,FO).

Next we consider the AlgorithmFN. Here the central con-
troller does not observes the flags and there is no perturbation
of angles. we consider 5, 10, 15 and 20 agents to demonstrate
the result. The simulation result are given in Fig. 11. We can
see the agents converge to a point for upto 15 agents. The
simulation result (Fig. 11) shows that, this algorithm does
not work for agent 20 agents but still it gives better result
than algorithmA.

We see all the algorithms are not efficient for making the
agents converge to a point. Table 2 shows performance com-
parison of all the algorithms. Table 3, Table 4 and Table 5
gives comparison of the number of iterations and of the com-
putations time between the algorithms for 10 and 15 and 20
agents respectively. Note that NC denotes these cases where
the algorithm did not make the agents converge to a point.

To demonstrate the result that the agents can meet at any
pre-specified point, we consider 5 agents. Here the meeting
point is (0,0) . The result is given in Fig. 12. It shows that
where the final point is specified all the algorithms will work.
Table 6, Table 7 and Table 8 gives comparison of the number
of iterations and of the computations time between the al-
gorithms for 10 and 15 and 20 agents respectively when the
meeting point is specified. The results shows that even the
number of agents are higher, the algorithms (A,FO) andFO

are taking few iteration to converge.We consider 50 agents
also for the algorithms (A,FO), FO and the simulation result
is shown in Fig. 13.

0 10 20 30 40 50 60
0

1

2

3

4

5

6

No of Iteration

r

−10 −5 0 5 10
−12

−10

−8

−6

−4

−2

0

2

4

X−axis position

Y
−

a
x
is

 p
o

s
it
io

n

(a) (b)

0 500 1000 1500 2000 2500
0

2

4

6

8

No of Iteration

r

−10 −5 0 5 10
−10

−5

0

5

10

X−axis position

Y
−

a
x
is

 P
o

s
it
io

n

(c) (d)

0 1000 2000 3000 4000 5000 6000
1

2

3

4

5

6

No of Iteration

r

−10 −5 0 5 10
−8

−6

−4

−2

0

2

4

X−axis position

Y
−

a
x
is

 P
o

s
it
io

n
(e) (f)

0 2000 4000 6000 8000
2

3

4

5

6

7

8

No of Iteration

r

−10 −5 0 5 10
−10

−5

0

5

10

X−axis position

Y
−

a
x
is

 P
o

s
it
io

n

(g) (h)

Figure 7: AlgorithmA (a) r vs number of iterations for 5 agents (b) Trajec-
tory for 5 agents (c)r vs number of iterations for 10 agents (d) Trajectory
for 10 agents (e)r vs number of iterations for 15 agents (f) Trajectory for
15 agents (g)r vs number of iterations for 20 agents (h) Trajectory for 20
agents

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

No of Iteration

r

−2000 −1000 0 1000 2000 3000
−3000

−2500

−2000

−1500

−1000

−500

0

500

1000

X−axis position

Y
−

s
x
is

 p
o

s
it
io

n

(a) (b)

Figure 8: Algorithm (A,FO) (a) Change inr with iteration (b) Trajectory of
the agents

Proceedings of ICEAE 2009

1332

Kaushik Das, Debasish Ghose

Table 2: Comparison between the algorithms for different number of agents
Converge

Algorithm 5 10 15 20
A Y Y N N

(A, FO) N N N N
(A,FN) Y Y Y Y

FO N N N N
FN Y Y Y N

0 20 40 60 80 100 120
0

1

2

3

4

5

6

No of Iteration

r

−5 0 5 10 15
−5

0

5

10

15

X−axis position

Y
−

s
x
is

 p
o

s
it
io

n

(a) (b)

0 100 200 300 400 500
0

1

2

3

4

5

6

7

No of Iteration

r

−10 −5 0 5
−10

−5

0

5

10

X−axis position

Y
−

sx
is

 p
o

si
tio

n

(c) (d)

0 500 1000 1500
0

1

2

3

4

5

6

No of Iteration

r

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

8

X−axis position

Y
−

sx
is

 p
o

si
tio

n

(e) (f)

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6

No of Iteration

r

−10 −5 0 5 10
−8

−6

−4

−2

0

2

4

6

X−axis position

Y
−

sx
is

 p
o

si
tio

n

(g) (h)

Figure 9: Algorithm (A, FN) (a) r vs number of iterations for 5 agents (b)
Trajectory for 5 agents (c)r vs number of iterations for 10 agents (d) Trajec-
tory for 10 agents (e)r vs number of iterations for 15 agents (f) Trajectory
for 15 agents (g)r vs number of iterations for 20 agents (h) Trajectory for
20 agents

0 100 200 300 400 500
0

2000

4000

6000

8000

10000

12000

No of Iteration

r

−4 −2 0 2 4

x 10
4

−3

−2

−1

0

1

2

3

4
x 10

4

X−axis position

Y
−

sx
is

 p
os

iti
on

(a) (b)

Figure 10: AlgorithmFO (a) Reduction inr with iteration (b) Trajectory of
the agents

0 50 100 150 200
0

1

2

3

4

5

No of Iteration

r

−5 0 5 10
−10

−8

−6

−4

−2

0

2

X−axis position

Y
−

sx
is

 p
o

si
tio

n

(a) (b)

0 200 400 600 800 1000
0

1

2

3

4

5

6

No of Iteration

r

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

8

X−axis position

Y
−

sx
is

 p
o

si
tio

n

(c) (d)

0 1000 2000 3000 4000 5000
0

2

4

6

8

No of Iteration

r

−10 −5 0 5 10
−10

−5

0

5

10

X−axis position

Y
−

s
x
is

 p
o

s
it
io

n

(e) (f)

0 5000 10000 15000
1

2

3

4

5

6

No of Iteration

r

−10 −5 0 5
−6

−4

−2

0

2

4

6

8

X−axis position

Y
−

sx
is

 p
o

si
tio

n

(g) (h)

Figure 11: AlgorithmFN (a) r vs number of iterations for 5 agents (b) Tra-
jectory for 5 agents (c)r vs number of iterations for 10 agents (d) Trajectory
for 10 agents (e)r vs number of iterations for 15 agents (f) Trajectory for
15 agents (g)r vs number of iterations for 20 agents (h) Trajectory for 20
agents

Proceedings of ICEAE 2009

1333

RandomizationMechanisms Based Positional Consensus in Homogeneous Multi-Agent Systems

Table 3: Comparison between algorithm for 10 agents, (NC : No Conver-
gence)

10Agents
Algorithm Iterations ComputationTime

A NC NC
(A,FO) NC NC
(A, FN) 1262 26

FO NC NC
FN 1381 29

Table 4: Comparison between algorithm for 15 agents (NC : No Conver-
gence)

15Agents
Algorithm Iterations ComputationTime

A NC NC
(A,FO) NC NC
(A, FN) 1874 59

FO NC NC
FN 5584 234

Table 5: Comparison between algorithm for 20 agents (NC : No Conver-
gence)

20Agents
Algorithm Iterations ComputationTime

A NC NC
(A,FO) NC NC
(A, FN) 7949 1056

FO NC NC
FN NC NC

Table 6: Comparison between algorithm for 10 agents with specified point
(NC : No Convergence)

10Agents
Algorithm Iterations ComputationTime

A NC NC
(A,FO) 119 9
(A, FN) 2193 135

FO 118.25 8
FN 4101 229

Table 7: Comparison between algorithm for 15 agents with specified point
(NC : No Convergence)

15Agents
Algorithm Iterations ComputationTime

A NC NC
(A,FO) 235 10
(A, FN) NC NC

FO 278 14
FN NC NC

0 20 40 60 80
0

1

2

3

4

5

No of Iteration

r

−5 0 5 10
−5

0

5

X−axis position

Y
−

s
x
is

 p
o

s
it
io

n

(a) (b)

0 10 20 30 40 50 60
0

2

4

6

8

10

12

No of Iteration
r

−4 −2 0 2 4
−4

−2

0

2

4

6

8

X−axis position

Y
−

sx
is

 p
o

si
tio

n

(c) (d)

0 100 200 300 400 500
0

1

2

3

4

5

6

No of Iteration

r

−5 0 5
−6

−4

−2

0

2

4

6

8

X−axis position

Y
−

sx
is

 p
o

si
tio

n
(e) (f)

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

No of Iteration

r

−8 −6 −4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

X−axis position

Y
−

sx
is

 p
o

si
tio

n

(g) (h)

0 10 20 30 40 50
0

1

2

3

4

No of Iteration

r

−2 −1 0 1 2 3
−3

−2

−1

0

1

2

X−axis position

Y
−

s
x
is

 p
o

s
it
io

n

(i) (j)

Figure 12: Final point is specified : (a) AlgorithmA : r vs iteration (b)
Algorithm A : trajectory of the agents (c) Algorithm (A, FO) : r vs iteration
(d) Algorithm (A,FO) : trajectory of the agents (e) Algorithm (A,FN) : r vs
iteration (f) Algorithm (A, FN) : trajectory of the agents (g) AlgorithmFO :
r vs iteration (h) AlgorithmFO : trajectory of the agents (i) AlgorithmFN :
r vs iteration (j) AlgorithmFN : trajectory of the agents

Proceedings of ICEAE 2009

1334

Kaushik Das, Debasish Ghose

0 500 1000 1500 2000
0

5

10

15

No of Iteration

r

−10 −5 0 5 10
−10

−5

0

5

10

X−axis position
Y

−
s
x
is

 p
o

s
it
io

n

(a) (b)

0 500 1000 1500 2000
0

5

10

15

20

No of Iteration

r

−10 −5 0 5 10
−10

−5

0

5

10

X−axis position

Y
−

s
x
is

 p
o

s
it
io

n

(c) (d)

Figure 13: Final point is specified : 50 agents (a) Algorithm (A,FO) : r vs
iteration (b) Algorithm (A,FO) : trajectory of the agents (c) AlgorithmFO :
r vs iteration (d) AlgorithmFO : trajectory of the agents

Table 8: Comparison between algorithm for 20 agents with specified point
(NC : No Convergence)

20Agents
Algorithm Iterations ComputationTime

A NC NC
(A,FO) 554 24
(A, FN) NC NC

FO 494 23
FN NC NC

8. CONCLUSIONS

In this paper we present some modified broadcast control
algorithms. The results shows that some algorithms are ef-
fective for higher number of agents. We have also shown that
without perturbation in the orientation, positional consensus
is possible by setting randomized flags.

REFERENCES

[1] T. Vicsek, A. Czirok, E. B. Jacob, I. Cohen and O. Schochet. Novel
type of phase transistions in a system of self-driven particles.Physics
Review Letter, 75:1226–1229, 1995.

[2] G. Antonelli and S. Chiaverini. Kinematic control of platoons of au-
tonomous vehicles.IEEE Trans. Robotics and Automation, 22(6) :
1285–1292, 2006.

[3] B. V. Gervasi and G. Prencipe. Coordination without communication:
The case of the flocking problem.Discrete Applied Mathematics, 143:
203-223, 2004.

[4] M. Cieliebak, P. Flocchini, G. Prencipe and N. Santoro. Solving the
robots gathering problem.In Automata, Language and Programming,
Springer Verlag, Berlin, 2003.

[5] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots.
SIAM J. on Computing, 28 : 1347-1363, 1999.

[6] T. Bretl. Control of Many Agents Using Few Instructions.In Third
Robotics Science and System Conference, Atlanta, 2007.

[7] S. Boyd and L. Vandenberghe.Convex Optimization. Cambridge Uni-
versity Press, Cambridge, 2004.

[8] B.R. Donald, C.G. Levey, C.D. Mcgray, I. Paprotny and D. Rus. An
untethered,electrostatic, globally controllable MEMS micro-robot.J.
Microelectromech. Syst, 15(1) : 1-15 , 2006.

[9] K. Das and D. Ghose. Positional Consensus in Multi-Agent Systems
using a Broadcast Control Mechanism.In American Control Confer-
ence, St. Losis, 2009, (to appear).

[10] D. Bertsimas and J.N. Tsitsiklis.Introduction to Linear Optimization.
Athena Scientific, U.S.A, 1997.

[11] D.G. Luenberger.Introduction to Linear and Nonlinear Programming.
Springer, Berlin, 2008.

[12] H. Ando, Y. Oasa and I. Suzuki. Distributed Memoryless Point Con-
vergence Algorithm for Mobule Robots with Limited Visibility.IEEE
Tran. of Robotics and Automation, 15(5): 818-828 , 1999.

[13] W. Rudin. Principles of Mathematicla Analysis. McGRAW-HILL
Book Company, Sigapore, 1976.

[14] A. Jadabaie, J. lin, and A.S. Morse. Coordination of groups of mo-
bile autonomous agents using nearest neighbour rules.IEEE Trans.
Automat. Contr, 48(6) : 988-1001 ,2003.

[15] G.C. Chasparis and J.S. Shamma. Linear-Programming-Based Multi-
Vehicle Path Planning with Adversaries.In American Control Confer-
ence, Portland, 2005.

[16] C. Reynolds. Flocks, herd and schools: A distributed behavioral
model.Comput. Graph., 21(4) : 25-34 , 1984.

[17] V.D. Blondel, J.M. Hendrickx, A. Olshevsky and J.N. Tsitsiklis. Con-
vergence in Multiagent Coordination, Consensus, and Flocking.In
Conference on Decision and Control, Seville, 2005.

[18] J.K. Sengupta, G. Tintner and C. Millham. On some Theorems of
Stochastic Linear Programming with Applications.Management Sci-
ence, 10(1) : 143-159 , 1963.

Kaushik Dasobtained a B.E. degree in
Electrical Engineering from Bengal En-
gineering College (a D.U.), Calcutta, In-
dia in 2003 and ME degree in Electrical
engineering from Jadavpur University,
Calcutta, India in 2006. Presently, he is
a research scholar in the Department of
Aerospace Engineering at the Dynamics

and Control System Lab.

Debasish Ghose obtained a B.Sc.
(Engg.) in Electrical Engineering
from the Regional Engineering College,
Rourkela, India, in 1982, and the ME
and PhD. degrees, also in electrical en-
gineering, from the Indian Institute of
Science, in 1984 and 1990. He is a pro-
fessor in the Department of Aerospace

Engineering at the Indian Institute of Science. His research
interest are in the areas of guidance of aerospace vehicle, au-
tonomous guided vehicles, applied game theory, multi-agent
dynamics and control, decision-making in large scale sys-
tems and resource allocation and scheduling Problems.

Proceedings of ICEAE 2009

1335

Multi-Agent Rendezvous Algorithm with Rectilinear
Decision Domain

Kaushik Das� and Debasish Ghose

GCDSL, Dept. of AE,
Indian Institute of Science,

Bangalore, India
{kaushikdas,dghose}@aero.iisc.ernet.in

Abstract. The aim of this paper is to develop a computationally efficient decen-
tralized rendezvous algorithm for a group of autonomous agents. The algorithm
generalizes the notion of sensor domain and decision domain of agents to enable
implementation of simple computational algorithms. Specifically, the algorithm
proposed in this paper uses a rectilinear decision domain (RDD) as against the
circular decision domain assumed in earlier work. Because of this, the compu-
tational complexity of the algorithm reduces considerably and, when compared
to the standard Ando’s algorithm available in the literature, the RDD algorithm
shows very significant improvement in convergence time performance. Analyti-
cal results to prove convergence and supporting simulation results are presented
in the paper.

Keywords: Multi-agent, Rendezvous, Decision domain, Consensus.

1 Introduction

Research on multiple agents in the context of robotics is motivated by the fact that
instead of using a highly sophisticated and expensive automated agent, it may be ad-
vantageous to use a group of small, simple, and relatively cheap autonomous agents
(mobile robots or UAVs).

The autonomous control of multi agents has emerged as a challenging problem. The
agents are assumed to have limited sensor and communication range and execute some
local rule-based strategy depending on the information collected by each agent from the
environment and from neighboring agents. One of the generic tasks that such a system
of agent is often called upon to perform is to physically bring all the agents to a common
point. This is called a multi-agent rendezvous problem [1]. This problem is important
because if rendezvous is feasible, then more general formations are also achievable [2].
Previous work in this area are by Ando et al. [3] and Lin et al. [4] where each agent
moves toward the rendezvous point by performing a sequence of “stop-and-go" moves.
The stop mode is basically the sensing period and is an interval of fixed length. In the
go mode the agents will maneuver in an interval of variable length and will move from
its current position to a new position. In [3], as also in our paper, the sensing period

� The authors gratefully acknowledge the AOARD/AFOSR for their grant to this project.

P. Vadakkepat et al. (Eds.): FIRA 2010, CCIS 103, pp. 162–169, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Multi-Agent Rendezvous Algorithm with Rectilinear Decision Domain 163

is assumed to be zero. Both [3] and [4] use algorithms that require determination of
the smallest circle that contains a given set of agent positions. These algorithms are
called “circumcenter algorithms". Although the complexity of this algorithm is proved
to be subexponential of order O(ne(2+o(1))

√
2 lnn) [5], the number of actual computations

is fairly high. In our paper we generalize the notion of sensing domain and decision
domain and show that by using a rectilinear decision domain the computations can be
simplified considerably, thus bringing down the convergence time.

We show that our algorithm is far superior in terms of computational time than
Ando’s algorithm [3] which is the standard algorithm in the literature. we consider
point robots with simple kinematics and instantaneous directional motion as in [3], [4].

2 Preliminaries

Let R = {a1,a2, . . . ,an} be the set of robots or agents. The positions of agent ai is
given by pi = (xi,yi) ∈ R

2. The sensor domain of a agent ai is denoted as Si and its
decision domain is denoted by Di, where Di ⊂ Si. Information sensed from the decision
domain is used to implement the algorithm. Essentially, we introduce the concept that
information from the whole of the sensor domain need not be used for decision-making.
In Fig. 1a, we give a schematic of these concepts. Note that, in general, pi need not be
inside Si. An agent determines its set of neighbouring agents based on Di. In this paper
we assume that the sensing domain (Si) of all the agents is circular with radius r. The
decision domain (Di) is a square of side 2d, with d < r√

2
, aligned with a pre-specified

global (X ,Y) reference frame. This is shown in Fig. 1b. The set of neighbors of agent
ai is defined as Ni = {a j | (|xi − x j|) ≤ d and (|yi − y j|) ≤ d}.

Note that an agent is also its own neighbor, so ai ∈ Ni. Also, if a j ∈ Ni then ai ∈ Nj.
In Ando et al. [3] Si and Di are the same and are circles.

Di
Si

ai

2d

X

2d

d

X

d

Y
ai

aj

Y

(a) (b)

Fig. 1. (a) General sensor domain and decision domain (b) The sensor domain is circular and the
decision domain is a square aligned with the global X −Y coordinates

3 Rectilinear Decision Domain (RDD) Algorithm

Convergence to a rendezvous point in [3] is proved through two properties: (i) Agents
who are neighbours remain as neighbours (ii) Agents come closer with each other in

164 K. Das and D. Ghose

2d

d

ai(tk)

ci(tk)

Fig. 2. Agent ai will move to the centroid of the rectangle. The square with broken lines
is the decision domain of agent ai and agents inside it belong to Ni. The solid rectangle
is the smallest rectangle that contains the agents in Ni.

some sense till they meet at a point. The RDD (rectilinear decision domain) algorithm
retains these two ideas. Again as in [3] the RDD algorithm has the assumption that the
initial graph is connected.

Algorithm RDD (Rectilinear Decision Domain)

Step 1: Each agent ai determines its neighbour set Ni using its decision domain Di.
Step 2: Each agent constructs the smallest rectangle, aligned with the global coordinate
axes, that contains all the members of its neighbour set.
Step 3: Each agent computes the centroid of the rectangle and moves to it.

Fig. 2 illustrates these steps where ci(tk) is the centroid of the rectangle at the time
instant tk. These steps are similar to Ando’s algorithm [3], but for a few significant dif-
ferences. In Step 1, Ando’s algorithm determines neighbours using the sensor domain
Si. In Steps 2 and 3, Ando’s algorithm computes the circumcenter of the neighbours and
moves toward it subject to a constraint. Unlike RDD which allows the agents to move
directly to the centroid, Anod’s algorithm may not allow the agents to reach the cen-
troid. These two important differences lead to high computational complexity, and thus
higher convergence time, in Ando’s algorithm. In RDD, an agent ai uses the informa-
tion Pi = {(x j,y j)|a j ∈ Ni} where a j ∈ Ni, and computes max{x j}, min{x j}, max{y j}
and min{y j} to obtain the rectangle. The computational complexity of this operation is
O(n). We will now state two important theorems.

Theorem 1. An agent’s movement will be confined to a square of side d centered at the
agent’s current position and aligned with the global reference frame.

Proof. Consider the maximum deviation of the centroid of the rectangular area along
the X -axis from the agent’s current position. This will be less than d/2 because the
maximum deviation of a neighbor’s position along the X -axis is d. Similar arguments
hold for the Y -axis. So the agent movement will be confined within a square of side d,
centered at the agent’s current position. �

Multi-Agent Rendezvous Algorithm with Rectilinear Decision Domain 165

xi(tk)

xlj(tk)

A B

C D

E F

xj(tk)

xi(tk)

xj(tk)

xli(tk) xri(tk)

xrj(tk)

Fig. 3. Agent ai,a j and its neighbor projection along X-axis

Theorem 2. If at any time tk, agents ai and a j are neighbors, then they will be neigh-
bors for all time t > tk.

Proof. Let the projections of agents ai and a j on the X axis at time tk be denoted by
Xi(tk) and Xj(tk), respectively, where Xj(tk) > Xi(tk). Let the left most and right most
projections of the neighbors of agent ai be Xl

i (tk) and Xr
i (tk), respectively. The position

of agents ai and a j on the X axis at time instant tk+1 is then Xp(tk+1) =
Xl

p(tk)+Xr
p(tk)

2 ;
where p = i, j. The distance between the agents ai and a j along the X axis at time
instant tk+1 is | Xj(tk+1)−Xi(tk+1) |= 1

2 | (Xl
j(tk)−Xl

i (tk))+ (Xr
j (tk)−Xr

i (tk)) |.
We can show that | Xl

j(tk)−Xl
i (tk) |≤ d, since when Xl

i (tk) ≤ Xl
j(tk) ≤ Xi(tk), we

can write 0 ≤ Xl
j(tk)− Xl

i (tk) ≤ Xi(tk)− Xl
i (tk) ≤ d. Again, when Xl

j(tk) ≤ Xl
i (tk) ≤

Xi(tk), we can write Xl
j(tk)−Xl

i (tk) ≤ 0 ≤ Xi(tk)−Xl
i (tk) ≤ d. Similarly, we can prove

| Xr
i (tk)−Xr

j (tk) |≤ d. This implies that Xj(tk+1)−Xi(tk+1)≤ d. We can prove the same
along the Y axis too. �

The theorem proves that connectivity between agents, which plays an important role in
the performance of the algorithm, is preserved.

4 Analysis of the RDD Algorithm

Let the global convex hull made by the positions of the agents at the time instant tk be
denoted by Co(tk). We can define the diameter of the convex hull at the time instant
tk as dia(Co(tk)) = max{‖ pi(tk)− p j(tk) ‖}, i, j ∈ {1,2, . . . ,n}. When rendezvous is
achieved the diameter of the global convex hull is zero. We will first show that the
diameter of the global convex hull will reduce at each step.

Let us consider Coi(tk) as the convex hull made by the neighbor set of the agent ai

at the time instant tk. Let the smallest rectangle containing the neighbor set of agent ai,
and aligned along the global coordinate axes, at time instant tk be Ri(tk). It is obvious
that Coi(tk) ⊂ Ri(tk). Let yi

min = min{y j}, where y j is the y−th coordinate of a j ∈ Ni.
Other variables are similarly defined. Then we have the following result.

mid(Ri(tk)) = (1/2)((xi
min + xi

max),(y
i
min + yi

max)) (1)

166 K. Das and D. Ghose

A DaDA

M

aCD

CB aBC

aAB

Fig. 4. Rectangle made by the neighbor of agent ai

Theorem 3. mid (Ri(tk)) ∈Coi(tk) and mid (Ri(tk)) is not an corner point of Coi(tk)

Proof. Consider Fig. 4. Here Ri(tk) is the rectangle ABCD and mid point of it is M.
Each side must have an agent. Let NAB be the set of agents on side AB. Similarly,
NBC, NCD and NDA are the set of agents on the side BC, CD and DA, respectively. It
is clear that NAB ∩NCD = /0 and NBC ∩NDA = /0. Choose agents aAB, aBC, aCD and aAB

in such a way that aAB ∈ NAB, aBC ∈ NBC, aCD ∈ NCD and aDA ∈ NDA. The line joining
aAB and aBC will separate B and M. Similarly, the line joining aBC and aCDwill sep-
arate B and M, the line joining aCD and aDA will separate D and M and line joining
aDA and aAB will separate A and M. So, we can write M ∈ Co〈aAB,aBC,aCD,aDA〉. As
Co〈aAB,aBC,aCD,aDA〉 ⊂Coi(tk), then we can write M ∈Coi(tk). Let, the coordinate of
the mid (Ri(tk)) is (xi

mid ,yi
mid). If the rectangle is not a point then it is evident xi

mid
=
xi

min, xi
mid
= xi

max, yi
mid
= yi

min and yi
mid
= yi

max. This observation and M ∈Coi(tk)implies
that M can not be a corner point of Coi(tk). �

Now consider any agent ai. Let the maximum distance along the X -axis on the right side
between agent ai and its neighbors be di

rx and on the left side is di
lx. Similarly, along the

Y -axis the maximum distance above ai is di
ay and below of ai is di

by.The position of the
agent ai at time instant (tk+1) will be

xi(tk+1) = xi(tk)− (di
lx −di

rx)/2; yi(tk+1) = yi(tk)− (di
by −di

ay)/2 (2)

The movement of the agent ai will depends upon {di
lx,d

i
rx,d

i
ay,d

i
by}. The agent ai will

be stationary if di
lx = di

rx and di
ay = di

by. Next we will state a theorem that agents at the
corner points global convex hull Co(tk) cannot remain stationary.

Theorem 4. For any agent ai which is at the corner of Co(tk) and has at least one
non-located neighbor, both di

lx = di
rx and di

ay = di
by cannot be satisfied.

Proof. We will prove this by contradiction. Let di
lx = di

rx and di
ay = di

by for an agent ai

which is at a corner point. Let the agent ai be at corner point A in Fig. 5. The neighbors
a j and ak for which di

lx = di
rx and di

ay = di
by is at B and C, respectively. From Fig. 5, we

can write di
rx = d1 sinθ1, di

lx = d2 sinθ2, di
by = d1 cosθ1 and di

ay = d2 cosθ2. If di
rx = di

lx

and di
ay = di

ay,

d1/d2 = sinθ2/sinθ1 = cosθ2/cosθ1 (3)

Multi-Agent Rendezvous Algorithm with Rectilinear Decision Domain 167

θ2

θ1

d2
XX

Y

Y

d2cos(θ2)

d2sin(θ2)
d1 d1cos(θ1)

d1sin(θ1)

A

B

C

Fig. 5. Agent ai is at the corner point of Co(tk)

Equating the above two equations θ2 = θ1. Thus, A will be on the line BC. So, A is not
a corner point. This leads to the contradiction. �

From Theorem 4 and Theorem 3, it is clear that agents at the corner of the convex will
move either inside of the convex hull or move along the edges of the convex hull.

Theorem 5. No agent can be at a corner point of the convex hull Co(tk) at time tk+1.

Proof. We prove this by contradiction. Suppose an agent ai reaches the corner point
c1 of the convex hull Co(tk) at time tk+1. This implies that c1 is the mid point of the
rectangle made by the neighbors of agent ai at time tk. Then, according to Theorem 3,
c1 is inside the convex hull Coi(tk). Again Coi(tk) ⊆ Co(tk). This implies that c1 is the
convex combination of some points of Co(tk). This leads to the contradiction. �

Theorem 6. Co(tk+1) ⊂Co(tk)

Proof. Let there be m corner points of the convex hull Co(tk) given by Pc(tk) =
{p1, . . . , pm} and m1 corner points of the convex hull Co(tk+1) given by Pc(tk+1) =
{ p̂1, . . . , p̂m1}. Now, Pc(tk)∩Pc(tk+1) = /0, because no agent can reach at the corner of
the convex hull Co(tk) according to lemma 5 at time instant tk+1. The corner point agents
of Co(tk) must move (according to Theorem 4). Since p̂i ∈ Co(tk) and pi /∈ Co(tk+1),
for all pi ∈ Pc(tk), we have Co(tk+1) ⊂Co(tk). �

Next we will show that the diameter of the global convex hull will reduce at each step.

Theorem 7. dia(Co(tk+1) < dia(Co(tk))

Proof. As before, let Pc(tk) = {p1, . . . , pm} be the set of corner points of Co(tk) and
Pc(tk+1) = { p̂1, . . . , p̂m1} be the set of corner points of Co(tk+1). According to the defi-
nition of the diameter of a convex hull[7]

dia(Co(tk)) = max{‖pi − p j‖,∀pi, p j ∈ Pc(tk)} (4)

dia(Co(tk+1)) = max{‖ p̂i− p̂ j‖,∀p̂i, p̂ j ∈ Pc(tk+1)} (5)

Again ‖pi− p j‖< dia(Co(tk)) for all pi, p j ∈Co(tk) and pi, p j /∈Pc(tk). Here Pc(tk+1)∈
Co(tk) and Pc(tk+1)∩Pc(tk) = /0. From this, we get dia(Co(tk+1)) < dia(Co(tk)). �

168 K. Das and D. Ghose

The above theorem tells us that the sequence of convex hulls, generated by the positions
of the agents will make a descending chain of convex sets. Under similar arguments as
Ando et al.[3] it can be shown that the convex hull will become a point as all the agents
converge to a point. We omit the proof due to space limitations.

5 Simulation Results and Implementation Issues

In Fig. 6, four snapshots for 10 agents have been shown. One can see that all the agents
eventually converge to a point. The system converges when the maximum distance be-
tween the agents along the X axis and Y axis is less than the decision domain distance
(d), since the agents would converge to a single point in the very next step.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

X−axis

Y−
ax

is

0 1 2 3 4 5 6
0

1

2

3

4

5

6

X−axis

Y−
ax

is

0 1 2 3 4 5 6
0

1

2

3

4

5

6

X−axis

Y−
ax

is

0 1 2 3 4 5 6
0

1

2

3

4

5

6

X−axis

Y−
ax

is

Fig. 6. 10 agents placed randomly converge to a point

The comparative study between Ando’s algorithm and the RDD algorithm is ex-
ecuted. In Table 1, the comparison of computational time to converge is given. The
results shows that RDD algorithm is superior in terms of computational time.

In Table 2 comparison of the number of iterations to converge is given. The iteration
number in case of RDD algorithm is a bit higher than Ando’s algorithm. The reason
behind for this is the decision domain in case of RDD algorithm is smaller than Ando’s
algorithm.

The algorithm can be implemented by any agent (robot) that can gather information
about and from its neighbors (positions and orientations) using sonar sensors, vision
sensors or laser scanners. After generating the control command the agents can broad-
cast the control command with positions and orientation of the centroid information by
a short range communication mechanism. An agent receiving a broadcast control com-
mand from another agent which is not in its decision domain will ignore the command.

Multi-Agent Rendezvous Algorithm with Rectilinear Decision Domain 169

Table 1. Comparison of Computational Time

Time to Converge (sec)

Number of
Agents

Ando RDD Ando/RDD

20 0.5856s 0.0329 17.8065
50 3.0677s 0.1758 17.4544

100 12.1486 0.5439 22.3360
150 40.7101 1.7395 23.4031

Table 2. Comparison of Number of Iterations

Number of Iterations to Converge

Number of
Agents

Ando RDD Ando
(Time/Iteration)

RDD
(Time/Iteration)

20 3.8000 5.2667 0.1541 0.0062
50 6.8667 9.3333 0.4468 0.0188

100 8.4667 11.8667 1.4349 0.0458
150 11.3333 15.9333 3.5921 0.1092

6 Conclusions

We presented and analyzed a rendezvous algorithm considering a rectilinear decision
domain. The computational complexity of RDD algorithm is low compared to the well
established Ando’s algorithm in the literature. The RDD algorithm is simpler in terms
of few computation needed and in relaxing the restriction on the movement of the agents
to the centroid of the rectangle. In this sense, it is a purely centroidal algorithm. The
simulation results support our claim.

References

1. Kranakis, E., Krizanc, D., Rajsbaum, S.: Mobile Agent Rendezvous: A Survey. In: Flocchini,
P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 1–9. Springer, Heidelberg
(2006)

2. Lin, Z., Broucke, M., Francis, B.: Local Control Strategies for Groups of Mobile Autonomous
Agents. IEEE Transactions on Automatic Control 49, 622–628 (2004)

3. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed Memoryless Point Convergence for
Mobile Robots with Limited Visibility. IEEE Transactions on Robotics and Automation 15,
818–828 (1999)

4. Lin, J., Morse, A.S., Anderson, B.D.O.: The Multi-Agent Rendezvous problem. In: Confer-
ence on Decesion & Control, Maui, Hawaii, USA, pp. 1508–1513 (2003)

5. Gartner, G.: A subexponential algorithm for abstarct optimization problems. SIAM Journal
Computers 24(5), 1018–1035 (1995)

6. Das, K., Ghose, D.: Positional Consensus in Multi-Agent Systems using a Broadcast Control
Mechanism. In: American Control Conference, St. louis, Missouri, USA, pp. 5731–5736 (2009)

7. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1972)

Multi-Agent Rendezvous Algorithms under Various Information

Paradigms

Kaushik Das* and Debasish Ghose
�

*Research Scholar, Guidance, Control and Decision System Laboratory Aerospace
Engineering Department, Indian Institute of Science, Bangalore - 560012

E-mail: kaushikdas@aero.iisc.ernet.in
�

Professor, Guidance, Control and Decision System Laboratory Aerospace
Engineering Department, Indian Institute of Science, Bangalore - 560012

E-mail: dghose@aero.iisc.ernet.in (corresponding author)

Abstract all the agents to a common point. This is called a multi-agent
rendezvous problem. This problem is important because if
rendezvous is feasible, then more general formations are also
achievable.

This paper addresses the problem of achieving rendezvous in
a multi-agent system under various information paradigms.
We consider two classes of algorithms (i) Broadcast based
algorithms and (ii) Distributed control algorithms. In the first
we consider a case where each agent is homogeneous and all
agents are controlled by the same broadcast command from a
centralized controller. This method has low communication
cost. In the second case we consider each agent to implement
its own control based on information gathered from its
neighbours through a limited sensing capability. In this paper
we give a brief overview of the broadcast based methods and
some results on the distributed control algorithm where a
modification in the decision domain of the agents is shown to
yield significant benefits in terms of computational time,
when compared with standard algorithms available in the
literature. Moreover, we also show its straightforward
application to higher dimensional problems which is a
considerable improvement over available algorithms in the
literature.

The challenge in these algorithms is to develop control
algorithms such that the agents can collectively perform some
task. All the agents have limited sensor and communication
range and execute some local rule-based strategy depending
on the information collected by each agent from the
environment, from neighboring agents, and/or from a central
controller (in the broadcast case).

2 Broadcast Based Mechanisms

In this framework, each agent executes a command received
from a central controller which computes a common
command for all the agents after observing their positions
and orientations [1]. The main advantage of this framework
is the saving in communication cost due to the fact that the
same command is being transmitted in broadcast mode, as
against individual commands to each agent. A possible
schematic representation is given in Figure 1. 1 Introduction

Research on multiple agents is motivated by the fact that
instead of using a highly sophisticated and expensive
automated agent, it may be advantageous to use a group of
small, simple, and relatively cheap autonomous agents. The
group of agents can be used to accomplish various tasks in
different environments such as tactical operations, exploratory
missions, remote monitoring with mobile sensor networks,
avoidance of collision and over-crowding in automated air
traffic control, cleanups of toxic spills, fire fighting and
cooperative search with unmanned air vehicles.

(a) (b)

Figure 1: (a) Broadcast Mechanism (b) Implementation of the
broadcast mechanisms In multi-agent systems, autonomous control of groups of

mobile agents which are loosely interconnected through
limited range communication links has emerged as a
challenging problem. In this paper we discussed two
information paradigms; one based on a broadcast mechanism
and the other on a distributed control framework. One of the
generic tasks that such a system of agent is often called upon
to perform is to physically bring

Note that each agent has a local reference frame which is
used by the agent to implement the broadcast command. For
instance, if the command is “turn anti-clockwise by 30
degrees and proceed for 3 meters”, then the agent carries out
this command in its own local reference frame and not with
respect to the global reference frame. Thus, with the

same command issued to all agents, an agent that is oriented
at say 10 deg from the global reference frame will attain an
orientation angle of 40 deg, while an agent with initial
orientation at 110 deg from the global reference frame will
attain an orientation of 140 deg (Figure 1:). It was shown in

of agents. Also, note that z
1
, z

2
, u

1
 and u

2
 are free variables and can

take both positive or negative values. An illustration of this process is shown in Figure
2.

 that this problem can be formulated as a linear
programming problem, but the best result of bringing the agents
close can be achieved by only one step. In that paper
 a random perturbation was introduced in each agent’s
orientation and it was shown that several steps can then be executed
with each step leading to a smaller proximity between agents till
they converge. Several modifications (based on flag setting to
classify behavior of agents) were proposed in [3] and shown to
improve convergence.

2.1 Linear Programming Formulation

Figure 2: An illustration of how the square reduces in
size using the LP solution

Let the initial position and initial orientation of the n

ag
2

ents be x � (pp) � � and �
i
� (� , ��], i0 i1 i2 respectively, for all i �{1,..., n} . As before, we

define the control command to be broadcast as (,. We define
our � d) performance measure as the
half length, denoted by r � 0, of the side of a square oriented
along the global coordinate frame, and containing all the
final positions of the agents. 2

2.2 Randomization Mechanisms

2.2.1 Perturbation in the orientation

The solution of the linear programming (LP) problem will
yield control instructions which can be broadcast to all the
agents using which the agents will move to a new position or
within a new square region of smaller area. It can be shown
that no further improvement of the performance (that is,
reduction in r) can be achieved by repeated use of the
algorithm.

Let this square be centered at z � (�� . ,zz12
)

Assuming that all the agents execute the command (,)

their final positions, given by x q be, [q � � will if
�

i12i
]
2

, � d

d �� x � R()() � (1)
0 ��

x �� R if i0 i0 �� We can generalize the process by assuming that each step in
the iteration is denoted by the index k , with the first step in
the iteration as k �1. That is
Now, consider a case where, the agents receive a broadcast
command containing the LP solution and a command to
randomly perturb the final orientation angle after the LP solution
has been implemented. In this, the orientation angle, after
implementing the LP solution is perturbed by each agent as,

� p � cos ��sin ���� �q �� u i1 i1 i0 i01
� ��� ��� ��� (2) qp s � u ���� i2 i0 i0 � 2 in� cos �� �� � i2 �� � ���

where, u
1
� d cos� and u

2
� d sin� are the control

variables that replace (, te that the above equations). No� d
are linear . Now, we formulate the linear programming
problem as,

ˆ � �� �� , �1 ik � ,1ik ,1 ik �

where, the perturbation angle �
ik,1�

is given by
� �ik,1� i ��

Minimize r where, �
i
is a random number generated by each agent

independently and � is a scaling angle which is common to
all the agents.

Subject to rp � u cos�� u sin �� z
�� � r i11 i02 i01

rp � u sin � � z � u cos �� �r i21 i02 i02
i 1, , �� n.

r � 0 The decision vector is (,rz
1
, z

2
,u

1
,u

2
) , which the same

irrespective of the number of agents remains. Only the

�
2.2.2 Flag Setting Approach

The main idea behind the flag setting approach is that each
agent a

i
randomly generates a flag f

i
that can take one of

number of inequality constraint increases with the number

two values. One is high ��, denoting an active agent and

Table 1 : The different performance for the algorithm
(Y=Yes; N=No)

2.3 Achieving Positional Consensus at Desired Point

In the previous section, we consider the problem of positional
consensus, but did not have control over the point at which
the agents can meet.

Suppose we have a pre-specified meeting point then we can
achieve this by slightly modifying the previous formulation.
In this modified form we define the meeting point as the
center of the agent formation and are denoted by (,

2
. zz)

1 Now the inputs to the LP are the initial positions, initial
orientation and the meeting point. We can formulate the
modified linear programming problem as,

Minimize r

Subject to �r � p � u cos�� u sin �� z � r
i11 i02 i01

�r � p
i
� u sin�� u z � r

fh

other is low � f
l
� , denoting a passive agent. The set of

agents that have high flags (active) is den and oted by R
athe set of

agents that have low flags (passive) is R
p
.

Let the set of active agents at time t be Rt() � {i ∣ f
i
� f

h
}and

th e set of passive agents at time a t be f
i
� f

l
} be where i ��, n . An active

p
() � i ∣Rt { {1, }

agent is one that will implement the broadcast command and
change its state whereas a passive agent will ignore the
command and remain stationary. The flag value for each agent
may or may not be observed by the central controller (CC). The
central controller has information of position and orientation of
all the agents (active and passive) at each

** step. The control command (,) computed by the uu
12 central controller will be broadcast to

all the agents, but only the active agents will move.

Let the position and orientation of active and passive agents
be (x (x ,� ,�

ak
) and

,
) , respectively. After receiving ak,, pk, pk

the broadcast command the new position of the active and
passive agents are

d ��
x �� R ak,1�

x
ak,

� R(
ak ,

) () �
�� 0 �� x � x

pk,1 , � pk

where, (,) is the broadcast control command. � d

Now, we will propose five different algorithms obtained as
combination of the two randomization mechanisms described
in the previous section. They are denoted as A ,(,

o
),(,

N
), F

o
, F

N

and are shown in Figure 5. AF AF The algorithm A that introduced perturbation only in
the angle has been studied in [2].

Figure 3: Taxonomy of the randomization mechanism based
algorithm

cos ��21 i02 i02
i � 1,�, n.
r � 0

The decision vector is (,ru ,u) . Note that the number of
12 decision variables has reduced over the previous formula.
Distributed Control Algorithms

3 Distributed Control Algorithm

The present work proposes a new modified algorithm for
distributed implementation of a rendezvous algorithm based
on a modified decision domain. Previous work in this area
are done by Ando et al. [4] and Lin et al. [5] in two
dimensions, where each agent moves toward the rendezvous
point by performing a sequence of “stop-and-go” moves. The
stop mode is basically the sensing period and is an interval of
fixed length. In the go mode the agents will maneuver in an
interval of variable length and will move from its current
position to a new position. The algorithm proposed by Ando
et al. [4] has been extended to arbitrary dimensions by Cortes
et al. [6].

Algorithm Random
perturbation
in orientation

Random
flag
setting

LP solved Movements
using of agents
agents

A Y N All All
Y Y Active Active (, O)AF
Y Y All Active (, N)AF
N Y Active Active OF
N Y all Active NF

either enters in the sensing range of f

In our paper, as in Ando’s work, the sensing period is
assumed to be zero. Ando’s works use algorithms that
require determination of the smallest circle that contains a
given set of agent positions. These algorithms are called
“circumcenter algorithms”. Basically it is a special case with
dimension 2 of the miniball problem [7] in higher dimensions
The complexity of this problem is proved to be

� (2���� dn

The outcome of this algorithm depends upon the set of
neighbors and the relative distance between the neighbor
agents. Hence, the position of agent a

i
at instant t

k
 depends

up , N don the set of neighbors t(
�
) and relative istance

ik1 between the agents zt(
k �

) at time instant t
k �1

. So we can
ij 1

write p(t) = p(t) + U(t)
� ln 1) � [4] in �� sub-exponential of order ��ne

d dimension of the space with n as the number of agents. So,
the number of actual computations is fairly high. In our work
we generalize the notion of sensing domain and decision
domain and show that by using a rectilinear decision domain
the computations can be simplified considerably, thus
bringing down the convergence time. We show that our
algorithm is far superior in terms of computational time than
Ando’s algorithm which is the standard algorithm in the
literature. The comparison results between RDD and
Ando’s algorithm in 2D was given in [4]. In this work we
extended it to three dimension and the comparative results are
also given.

3.1 Preliminaries

Let R � {,aa ,�, a
n
} be the set of robots or agents. The

ik ik �1 ik �1

where, Ut(
�

s the control command for agent at ik1
a
i instant t

k �1
. It is a function of the relative distance and

the set of neighbors. Hence we can write

) i

), z (ik �1
(

ik �1 ij
t
k �1

)) Ut() � fN (t

 12 2

(a) (b) positions of agent a
i
is given by p

i
� (,x

i
y

i
) � � . The

sensor domain of an agent a
i
is denoted as S

i
and its

decision domain is denoted by D
i
, where D

i
� S

i
. Information

sensed from the decision domain is used to implement the
algorithm. Essentially, we introduce the concept that

information from the whole of the sensor domain need not be
used for decision-making. In Figure 7 we give a schematic of
these concepts. Note that, in general, p

i
need not be inside S

i
.

An agent determines its set of
neighbouring agents based on D

i
. In this work we assume

that the sensing domain (S
i
) of all the agents is circular

Figure 4: (a) General sensor domain and decision
domain (b) The sensor domain is circular and the decision
domain is a square aligned with the global
X �Y coordinates.

3.2 Rectilinear Decision Domain (RDD) Algorithm

The RDD (rectilinear decision domain) algorithm retains two
basic ideas for a general rendezvous problem (1) Agents who
are neighbours remain as neighbours and (2) Agents come
closer with each other in some sense till they meet at a point.
The RDD algorithm will execute these following steps

with radius r . The decision domain D
i
is a square of

side 2d , with dr /2 , aligned
with a global (, rence frame. This is shown in Figure 7.

�
)refeXY

pre-specified 1 Each agent determines its neighbour set using its
decision domain.

The set of neighbors of agent a
i
is defined as

N
i
� {a

j
| (| x

i
� x

j
|)� d and (| y

i
� y

j
|) � d}. 2 Each agent constructs the smallest rectangle in

two dimensions (or cuboids in three dimensions) aligned
with the global coordinate axes that contain all the
members of its neighbour set.

Note that an agent is also its own neighbor, so a
i
� N

i
.

Also, if a
j
� N

i
 then a

i
� N

j
. In Ando et al. [5] S

i
and

D
i
are the same and are circles. 3 Each agent computes the centroid of the

rectangle (or the cuboids) and moves to it.
Let at t

k
instant of time the position of agent a

i
be

() �(xt(), y ()) wherpt t {1, }. The relative e i ��, n
ik ikik

position of agent a
i
with respect to its neighbor a

j
 (say) at To construct a rectangle or cuboids along the global reference

frame, an agent requires the information of the maximum and
minimum coordinates along any axes, which

time instant t
k
is, where j {,i,

i
}. �� m

zt() �p () t � pt () ijk jk ik

Let the global convex hull made by the positions of the is an one dimensional optimization problem over n points.
So the computational complexity of this algorithm is
��n� .

agents at the time instant t
k
be denoted by Co t

k
 (). We can define the diameter of the convex hull at the time

instant t
k
as (()) � max � p () � p (t)}

Figure 8 illustrates these steps where ct()is the centroid
ikof the rectangle at the time instant

t
k
. These steps are similar to Ando's algorithm [5], but for a

few significant differences. In Step 1, Ando's algorithm
determines neighbours using the sensor domain S

i
. In Steps 2

and 3, Ando's algorithm computes the circumcenter of the
neighbours and moves toward it subject to a constraint. Unlike
RDD which allows the agents to move directly to the centroid,
Ando's algorithm may not allow the agents to reach the
centroid. These two important differences lead to high
computational complexity, and thus higher convergence time,
in Ando's algorithm. In RDD, an agent

dia Co t
k
{

i
t

k jk
� where,

ij, �{1,2, �, n} . When rendezvous is achieved the diameter
of the global convex hull is zero. We will first show that the
diameter of the global convex hull will reduce at each step.

Let us consider ()t Co
ik
as the convex hull made by the neighbor set of the agent a

i
at

the time instant t
k
. Let the smallest rectangle containing the

neighbor set of agent a
i
, and aligned along the global

oordinate axes, at time instant c
be ().t

k ikikik i th It is obvious that Co () (t). � RRt t
a

i
uses the information P � {(x

j
, y

j
)| a

j
�ii N }

Let y
min

� min{ y
j
} , where y

j
 is the y coordinate of a

j
� N

i
.

Other variables are similarly defined. Then we have the

following result.

where a
j
� N

i
, and computes max{ x

j
}, min{ x

j
} , max{y

j
}

and min{y
j
} to obtain the rectangle. The computational

On complexity of this operation is ()
ii ii ((t)) � (1/ � y)) 2)((x � x),(y ik min max min max mid R

It has been proved in [4] that mid (()) o (t)R �Ct andik ik mid
((R corner point of t t is not aik)) Coik ().

Now consider any agent a
i
. Let the maximum distance along

the X - axis on the right side between agent a
i
and its

ii neighbors be d
lx
and on the left side is d

ly
. Similarly, i

along the Y -axis the maximum distance above a
i
is d

ay
i

and below of a
i
is d

by
.The position of the agent a

i
at time

instant (t
k �1

) will be Figure 5: Agents will move to the centroid of the
rectangle. The square with broken lines is the decision
domain of agent a

i
and agent inside it belong to N

i
. xt() � x (t) � (d

i

� d
i

)/2
ik �1 ik lx rx yt() � yt() � (d

i

� d
i

)/2
The solid line rectangle is the smallest rectangle that
contains the agent in N

i
.

ik �1 ik by ay

The movement of the agent a
i
will depend iii i

Agent a
i
will move to the centroid of the rectangle. The

upon {, , d , d } dd . The agent a
i
will be stationary if square with broken lines is the decision domain of agent a

i
 lx rx ay by ii ii

d � d and d � d . Next we will use a result that and agents inside it belong to N
i
. The solid rectangle is the

lxrx ayby
smallest rectangle that contains the agents in N

i
. Co t

k
agents at the corner points of global convex hull ()

cannot remain stationary. It has been proved in [4] that any agent motion will be
confined within a square of side d centered at the current
position and aligned with the global reference frame. It is
also shown in that paper [4] that if any two agents are
neighbors at any time instant t

k
then they will be neighbor

It can be proved that for any agent a
i
which is at the corner of

() at least one non-located neighbor, both and has Co t
k
ii ii

d � d and d � d cannot be satisfied.
lxrx ayby for all time instant tt

k
. �

Now, it is clear that agents at the corner of the convex will
move either inside of the convex hull or move along the
edges of the convex hull. It has been proved in [4] that Co t (

k

�1
) � Co t (

k
) . It is shown in [4] that the diameter

3.3 Analysis of Rectilinear Decision Domain (RDD)
Algorithm

of the global convex hull will reduce at each step, so ((
k �1

) �
dia Co t

k
)) . dia Co t ((The above result tells us that the sequence of

convex hulls, generated by the positions of the agents will
make a descending chain of convex sets.

According to the above results, those agents are at the corner
of the global convex hull, RDD algorithm give nonzero
control value. The convex hull made by neighbors of agent
at time instant is Co ()t ��{z here }� , wa

i
t
kikij

a
j
� N

i
. It has been proved that U (.) is not a corner point

of nless z
i1
� z

i2
� L � z

im
� 0. ()t , uCoik

Theorem: All the agents will converge to a point as t
k
�� .

Proof: ()b onvex hull generated by the e the cCo t
k

2) � . Now anypoints (corner Vt
k
() � pt ()ik of the Co t

k

coincides with the position pt()of, at least, one agent ik

a
i
at time instant t

k
. Since Co t (

k �1
) � Co t (

k
) , then it is

possible to define the convex set Co as the closure of the
intersection of all the ()for t

k
� Co t

k
0.

Let, V be a corner of Co . There exists a sequence of corners
Vt() f Co t (), which converges to V as okk

t
k
�� . Again, there exists a value j �{1, K, N} , such

that p (t for infinite number of values of t
k
.) t � V() jk k

Let us assume, without loss of generality, that j �1. Now
let us select only those values t

l
 of t

k
 with l � 0,1, K for

which pt
1
() Vt() for all l � 0. �ll

Since the number of neighbors of agent a
i
 is non- decreasing

as t
k
�� . The maximum number of neighbors should be N .

As the number of neighbors is finite then we can discard a
finite number of values of l and by remembering the index
variable we can say that such number is constant (number of
neighbors will not change). As the set {(), pt l � 0} , where
a

j
� N is infinite set of jl1

points and is a compact set then it has at least an
accumulation point P

j
. Then it is possible [9] to extract a

sequence of points converging to P
j
.

Let us select only those values of t ,
l
for which pt()

il(where a
j
� N

1
)

belongs to that sequence and let us rename
the variable l by r . This implies that

j
()c e ges to onv rpt r

P
i
 as r �� .

Now, () � pt �p () for zt () t converges to P
j
� P ijr jr 1 r 1

i � 1,K, m �1. Let us assume by slight abuse of notation
that Vt() is n the sensing region of X

1
. We know ir

U() t) � p(t)- p(t1 k �11 k 1 k �1

From the above equation we can say that U(s t) goe1 k �1

asymptotically toVX
1

ich is a corner of the convex , wh�
hull because V is a corner of the convex hull. According to
that condition, this can not happen unless all the points are at

s. So same positions (0) according to those conditionz
ij

� all the neighbors of agents a
i
 converge to a

point.

Now for any other agents two conditions can arise

The first case is similar to that given in [9]. So from it we can
say that all the agents will converge to a point. The second
case is not possible as the initial graph is connected.

4 Simulation Results and Discussions

4.1 Simulations Results

In the first set of simulations we have three agents. Initially
oo o

we consider ((1,1),45), ((5,4),135), and ((2,6), �45)as the
initial position and orientation angle of the three agents.
Using the perturbation technique, with normal distribution for
� and a scaling angle of �� 120

o

, the agents converge to a
point after a few iterations (see Figure 9). The
convergence criterion for terminating the simulation was
when the value of r became less that � 210

�4

.

(a) (b)

Figure 6: (a) Trajectory of the agents (b) Reduction in
r with iterations

In Figure 10, four snapshots for 10 agents have been shown
in two dimensions. Connectedness of the agent placement
was defined as follows; two agents are said to be connected
if they are within 2 units of each other. Although the initial

Algorithm Random
perturbation
in orientation

Random
flag
setting

LP solved Movements
using of agents
agents

Y N All All A
Y Y Active Active (, O)AF
Y Y All A i

placement of the agents was random, we ensured that the
agents were connected, which implies that there exists at
least one path between any two agents. One can see that all
the agents eventually converge to a point. The system
converges when the maximum distance between the agents
along the global reference frame is less than the decision
domain distance ��, since the agents would converge to a

d
single point in the very next step. In Figure 11 we placed
10 agents randomly in three dimensional space. One can see
that all the agents converge to a point.

4.2 Comparison Results
The comparative study between Ando’s algorithm and the

RDD algorithm was carried out in this work. In Table 2, the
comparison of computational time to convergence is given.
The results show that RDD algorithm is superior in terms of
computational time. The average was taken over 25 runs. In
Table 3comparison of the number of iterations to converge is
given. The iteration number in case of RDD algorithm is a
little higher than Ando’s algorithm. The reason behind this is
the decision domain in case of RDD algorithm is smaller than
Ando’s algorithm. However, this is easily offset by the fact
that RDD takes much less computational time per iteration.
In Table 4,5 we made a comparison

between Ando and RDD algorithm in 3D space. 9 Y-
ax
is

2
9

4

Y-
ax
is

1.5 1.5
4

101
8
 1

 77
 Table 2: Comparison of convergence time

0.5 0.5
1
0

8
 between Ando and RDD algorithm in two

0
0 X-ax is X-ax is 00.5 11.5 22.5 33.5 4 00.5 11.5 22.5 33.5 4 dimension

(a) (b)
Time to Converge

4

4
 Number Ando RDD Ando/RDD

3.5 3.5

3

3

 of (secs) (secs) Ratio

1

1,2,3,4,5,6,7,8,9,10 Agents 2.5 6
5 92

3 s Y-
ax
i

Y-
axi
s

4 2

20 0.5856 0.0329 17.8065 8 10 7

1.5

1

1

50 3.0667 0.1758 17.1544
0.5 0.5

100 12.1486 0.5439 22.3360
0

0
 0 0.5 1 1.5 2 2.5 3 3.5 4 00.5 11.5 22.5 33.5 4 X-axis X-axis

15
0

 40.7101 1.7395 23.4031
(b) (d)

Figure 7: 10 agents placed randomly converge to a point in 2D Table 3: Comparison of number of iterations
between Ando and algorithm in two dimensions

44

6 3
3 1 Number of Iterations to Converge

 82 8 9 3 2 Z-
axi
s

Z-
ax
is

Number Ando RDD 2 2 10 14 6
9 5 1 3

7 4
7 10 0 0

4 44 2 4

32 3
2 2

Y-axis 1 1 X s -axi
00 00 Y-axis X-axis

Table 4 : Comparison of convergence time between Z-
ax
is

1,2,3,4,5,6,7,8,9,10 2
Z-
ax
is

2,6 95 Ando and RDD algorithm in three dimensions 8
1 1,3,4

1

0
4 0

4 4
4 3 Time to Converge 2

32 2 2 1 X-axis 1 Y-axis 00 0 0 Y-axis Number Ando RDD Ando/RDD X-axis

of Agents (secs) (secs) Ratio
20 1079 36.70 0.03 (c) (d)
50 4531 543.72 0.12
100 5074 2319.75 0.45 Figure 8: 10 agents placed randomly converge to a

 point
150 2854 4655.62 1.63

Algorithm Random

perturbation
in orientation

Random
flag
setting

LP solved
using
agents

Movements
of agents

Algorithm Random

perturbation
in orientation

Random
flag
setting

LP solved
using
agents

Movements
of agents

A Y N All All

Algorithm Random

perturbation
in orientation

Random
flag
setting

LP solved
using
agents

Movements
of agents

A Y N All All
Y Y A i A i

Table 5: Comparison of number of iterations between
Ando and algorithm in three dimensions

[6] Z. Lin, M. Broucke and B. Francis, Local Control
Strategies for Groups of Mobile Autonomous Agents, IEEE
Transactions on Automatic Control, vo. 49, pp 622-628,
2004.

5 Conclusions

We presented and analyzed a rendezvous algorithm
considering a rectilinear decision domain. The computational
complexity of RDD algorithm is low compared to the well
established Ando’s algorithm in the literature. The RDD
algorithm is simpler in terms of few computations needed and
in relaxing the restriction on the movement of the agents to the
centroid of the rectangle.

Acknowledgement

The authors gratefully acknowledge the AOARD/AFOSR
for their grant to this project.

References

[1] T. Bretl, Control of Many Agents Using Few
Instructions, Third Robotics Science and System Conference,
Atlanta, 2007.

[2] K. Das and D. Ghose, Positional Consensus in
Multi-Agent Systems using a Broadcast Control Mechanism,
American Control Conference, St. Louis, Missouri, USA,
2009, pp. 5731 - 5736.

[3] K. Das and D. Ghose, Randomization Mechanisms
Based Positional Consensus in Homogeneous Multi-Agent
Systems, IISc Centenary International Conference on
Aerospace Engineering, Bangalore, India, 2009, pp 1327 -
1335.

[4] K. Das and D. Ghose, Multi-agent Rendezvous
Algorithm with Rectilinear Decision Domain, FIRA, 2010,
Bangalore.

[5] H. Ando, Y. Oasa, I. Suzuki and M. Yamashita,
Distributed Memoryless Point Convergence for Mobile
Robots with Limited Visibility, IEEE Transactions on
Robotics and Automation, vol. 15, pp 818 - 828, 1999.

[7] J. Cortes, S. Marti’nez and F. Bullo, Robust
Rendezvous for Mobile Autonomous Agents via Proximity
Graphs in Arbitrary Dimensions, IEEE Transactions on
Automatic Control, vol. 51, pp 1289 - 1298, 2006.

[8] B. Gartner: A subexponential algorithm for abstract
optimization problems, SIAM Journal Computers,
24(5):1018-1035, 1995.

[9] G. Conte and P. Pennesi, The Rendezvous Problem
With Discontinuous Control Policies, IEEE Transaction of
automatic Control, vol. 55, pp – 279283, 2010.

[10] J. Lin, A. S. Morse, and B. D. O. Anderson. The
multi-agent rendezvous problem. In Proceedings of the 42

nd

IEEE Conference on Decision and Control, pages 1508-1613,
Maui, USA, 2003

Algorithm Random
perturbation
in orientation

Random
flag
setting

LP solved Movements
using of agents
agents

A Y N All All
Y Y Active Active (, O)AF
Y Y All Active (, N)AF
N Y Active Active OF
N Y all Active NF

either enters in the sensing range of f

	Final Report AOARD-084098
	Final Report-DGhose.pdf

	Final Report AOARD-084098
	2009-ACC-KD-DG
	2009-ICEAE-KD-DG
	2010-FIRA-KD-DG-01
	Multi-Agent Rendezvous Algorithm with Rectilinear Decision Domain
	Introduction
	Preliminaries
	Rectilinear Decision Domain (RDD) Algorithm
	Analysis of the RDD Algorithm
	Simulation Results and Implementation Issues
	Conclusions
	References

	2010-FIRA-KD-DG-02

	2010-ICIUS-KD-DG.pdf

